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PREFACE 

Axrr oonrse in Advanced Calculus must deal with partial different 
tiation and multiple integrals, with systematic integiatitm, with im¬ 
proper integrals, and to some extent with complex quantities. Be» 
fore modem methods in analysis—"t-methods,*’as they are sometimra 
called—had been developed, the race became aware of a wide range 
of applications in physics (mcluding geometry, the noblest branidi of 
physios) which, al&ough not yet technical, nevertheless make exact¬ 
ing demands on precise formulation and thus bring out both the phys¬ 
ical hypotheses and the analytic means of working with them. The 
deduction of the partial differential equation which governs the flow 
of heat or electricity in condnctors, the establishment of the equation 
of continuity in hydrodynamics and elasticity, and the setting up of 
the equations which describe the motion of the vibrating string or 
membrane, are cases in point. In these days when modem physics 
is primarily interested in the motion of discrete particles, it is par¬ 
ticularly timely to emphasize continuous distributions of physical sub¬ 
stances throughout regions of space, and continuous transformations 
of space. 

The demands which geometry makes on partial differentiation are 
relatively slight. In tiiermod3mamics a thoroughgoing appreciation 
of what the independent variables are (in order that, when ^e letters 
expressing the variables of two classes overlap, the meaning of the 
partial derivatives may be clear) and the ability to think in terms of 
line integrals, are indispensable. 

Oscillatory motion is a basal otmception in physics. Simple har¬ 
monic motion; next, the simplest case of dai^ping; and fin^y the 
case of an impressed periodic force — these physical pictures are im* 
poriamt alike for the student of physics and the stiident Of pure 
matimmatics, for theji' help to give him perspective as he proeeeds 
withihe stiidyef tiie diapter in differential eqimttolH) whidk rdantil 

^iMIatfeover, Pourierit series and 
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Tn tihe early days of modern ma&ematics no sharp distinotion W 
made between the Differential and Integral Galcnlos, and the Calculus 
of Variations — it was all, the Infinitesimal Calculus. With tlie 
knowledge of the great delicacy, both in concepts and methods, of 
which the Calculus of Variations is capable, came to mathematicians 
an awe of this subject, which resulted in a certain aloofness ; the sub¬ 
ject became a topic in the theory of functions of real yariables. For 
the physicist, however, Hamilton’s Principle is indispensable, and he 
has be^ obliged .to get tc^ether some account of the rudiments of the 
Calculus of Variations as best he may. Sufficient conditions for a 
maximum or a Tninimum of an integral do not interest him. He needs 
to know when a certain integral is stationary, and this condition de¬ 
pends on t^e definition of .a variation, Sx, BU, etc. It is, therefore, 
essential that this definition be treated with care from the start, 
for it becomes increasingly complex as one proceeds. The Principle 
is applied to a variety of important problems in elastic vibrations. 

There is a chapter on the systematic treatment of differential equa¬ 
tions. But what is far more important is the unsystematic treatment 
of differential equations, which permeates these two volumes on the 
Calculus, beginning with the chapter on Mechanics in the Introduction 

to the Calcidus. I have, moreover, taken occasion in the present 
chapter to point out the inner meaning of a differential equation 
through the geometric picture of a field of infinitesimal vectors or an 
assemblage of surface elements, and have thus led up to the idea of 
the integrals as families of curves, or of surfaces generated by 
characteristic strips. 

As regards method, it sometimes happens that the naive use of iur 
finitesimals, even when it cannot be directly justified, has suggestive 
heuristic value; consider, for example, the transformation of multi¬ 
ple integrals and the flux across a surface; Chapter XII. In su(di 
oases, I have taken pains to conserve all that is helpful in these 
primitive conceptions, and have then supplemented them by proofs 
.wMch meet our present standards of rigor. In this connection may 
also be cited ^Although it is not a question here of infinitesimals) the 
jpote on density and specific pressure or specific force; Chap. Ill, S 

^ new form of the definition of a definite integral, simple ox mnl- 
itiple, makes,, possible a simple and rigorous proof of the Fundamental 
.ISffieorem of the Integral Calculus; Chap, XXI, §§ 1^3. 

a chapter on Vector Analysis, with applieations to the 
ptofff of l^toke’s Theorem and the deduotion of the Fimiet fommlae- 



Hqltipliera wppeax in lotfuiiui cdr in^cftiaas 
q£ feveta^ yariabka. Fourier’a aeriea a|i4 the aUied deTelopoaenk 
uxto aerks of Besael’a fonotioiui and zonal hamcmica are treated fr<SB 
the point of view of making the integral of the aqnaie of the ettcot 
aminimnm. * . 

In the foregoing I have been describing those aims of the book 
which are not common in the text-books of the present day. To at¬ 
tain these ends, a purely mathematical treatment, availing itself of 
that which is best in the mathematics of today, bat at the same time 
adapted to the powers (and the weaknesses) of the Junior or Senior 
in our colleges and schools of technology, must go before ; and, indeed, 
not only the early parts of the various chapters, but by far the 
greater part of the space throughout the whole boo^ is devoted to 
matters of an elementary nature. The book begins with the most 
rudimentary properties of polynomials and fractions, in preparation 
for integration, and the last chapter might well have been entitled: 
” The Story of V— 1.” It may seem exorbitant to spend ten pages 
on the study of integrals involving Va -f Iw -f ca:* and yet, a thorough¬ 
going understanding of all that is here involved covers substantially 
the whole field of systematic integration. But why should a physi¬ 
cist worry about the sign of a factor removed from under a radical 
sign ? Merely because an error here gives him a wrong result in a 
problem on attractions. 

The book is so written as to afford the greatest latitude in the 
order in which the various topics may be taken up. Thus the student 
may begin with the chapter on Partial Differentiation, or Double 
Integrals, or Differential Equations. Even within a chapter there is 
often a choice; cf. for example the foot-notes on p.p. 44 and 106. Per¬ 
sonally, I should not wish to begin the course with Chapter I. For, al¬ 
though the subject is largely formal, testing the student’s training in 
high school algebra and teaching him how to evaluate somewhat intri¬ 
cate intends, the treatment should also serve to give him insight 
into the methods of algebra, and it should encourage him to become 
acquainted, for example, with the early chapters of Bdcher’s 
Algebra. 

It is assumed that B. 0. Peiw^’s A Short Table of Jntegr<de, Ginn 
& Co., Boston, is in the hands of the student. The references to 
Analytic Qeometrg are to Osgood and Graustein’a Plane and, /Solid 
Analytic (Teomelry, Macmillan, 1921. 
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An honest attempt has been made to meet the nndeTgtadnate <m 
Ms own ground. * The appeal is not merely to the specialist in math- 
ematies or physics; it is to all who would possess themselves of &e 
Calculus as a method for understanding, in the broadest sense of the 
term, the quantitative relations which follow from the laws of nature. 

CaxBBiiiaa, Massacrcmtis, 
September, 1936. 
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CALCULUS 

CHAPTER I 

GEnSRAI METHODS OF HTTEORATIOH 

In the first treatment of Integration,* various devices were set 
forth, whereby many integrals could be evaluated, but no general 
methods of integration were discussed. The object of the present 
chapter is to show how certain large and important classes of func¬ 
tions can be systematically integrated. The leading theorem is this, 
that every rational function can be integrated in terms of the elementary 

functions. Its proof depends on certain properties of polynomials 
and fractions, and so we begin with the discussion of these properties. 

1. Folynomiali. By a polynomial is meant a sum of monomial 
terms, 

CiZ"< -I- Cjor* -p ••• 4- 

where the exponents are positive integers or zero. Such a sum can 
be written in the form; 

(1) Q{x) = a, 4- aiSB + a*®* 4- ••• 4- a,a!", 

where the coefficients, a,,, do not depend on x, and » is a positive 
integer, or 0. In particular, a polynomial may reduce to a single 
term, as as* or — ® or c or 2 or 0. 

If is not 0, the degree of 0(x) is defined as n. Thus the poly¬ 
nomials 

o* — as*, — X, 6 

are respectively of degree 3, 1, and 0. The polynomial 0 has no 
degree, and it is the only polynomial which has no degree.** 

It is clear that the sum, the difference, and the product of two 

* Ct. the author's Inirodwstion to the Calculus, 1922, Chap, IX. 

** Although the treatment here ^ven is complete, the student will find it use¬ 
ful to md the first chapter of Bfioher’s Alffebra. 

1 
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vatoes of as, where ^ g n, t^en the coTrespondiBg coeffloieQts jnost 
he respeotivelj equal: 

= naeltt. 

S'or, i^e difference, G(x)— g(x), vaniahes identicallj. 

EXERCISES 

Factor each of the following polynomials: 

1. x* — a^. 

, 4. a!* — 2 + a‘. 
6. a:* + 6 a; -f- 6. 

8. SB* + 6 a; + 7. 

9. .2 aj* -H ai — 7. 

11. ac* — a*. 

2. a:* + a*. S. a:* + 

5. ar* + 2 a*a!* + a*. 

7. 16 a:*-12 a:*-3 a^. 

Ana. (a; + 3-t-V^)(a: + 3 — V?). 

10. 6 a;* — a:* - 6 a;*. 

12. af — aK 13. 2a^-3. 

2. Fraetioni. A fraction is the quotient of two polynomials,* 
g(x)/0(x). The numerator, g(pe), may be any polynomial whatever. 
The denominator, G(x), may be any polynomial tut 0. 

If the degree of g(x) is less than that of G(x), the fraction is 
called B. proper fraction. For example : 

6 a! 12 . 
4 + a:2’ 2-3 a-' 

In all other cases, the fraction is called an improper fraction. For 
example: 

2 ai® -f-1 ai -f-1 
X + 3 ’ ■ X 

The fractions include the polynomials as particular cases, since 
G(x) may = 1. 

It may happen that numerator and denominator have a common 
factor; e.g. 

a?— a? 

afi — a* 

• * The term fraction in elementary algebra is also applied to expreaaionB like 

-tdiioh can be reduced to a fraction as defined above. It is preferable henoe- 

Tordi to denote eucb expressions as rational functions; cf. § 8. Sometimes 

expresidont like x/Va —x, or (dnx)/x are called ftacUons. This use ttm 

wood Will not oocnt ^n diis book, dnce it would lead on^ to oonfodon* 
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WbAa all such &ctor8 hare beea divided out, the resulting fvactirai 
is said to be In its lowest terms. Thus the above fraction, when 
reduced to ite lowest terms, becomes: 

ae-f o 
a? + cue + a* 

When a fraction is given, the first thing to do is, if necessary, to 
reduce it to its lowest terms, and we shall tacitly assume that this 
has been done. 

An improper fraction (which is not a polynomial) can be reduced, 
by the process of division, to the sum of a polynomial and a proper 
fraction. For example, 

2x*-3^~2x^-3x-3 ■> 1. «-2 -----=2 3^— 3 X — 1 H-- 
i^ + x + l 9!* + a; + l, 

Since our ultimate object is that of integrating a given fraction, 
i.e. of evaluating 

and since the integration of polynomials presents no difficulty, we 
shall be interested in the further study only of proper fractions. 

EXERCISES 

Reduce each of the following fractions to the sum of a polynomial 
and a proper fraction. 

J g® -1- g -1-1 2 g*+g+i „ x^ + x+1 o» ---* 
X g2 g-i-1 

6. ** + 1. 
* g* — 6g-)-6 
0» ^ ' 

• (g-i)» g® +g* 5x + 2 

g* — 8a!* + 24a!* — 32 3!4-16 ^ g'* — 7 g + 1 
g’ + g + 1 (g — !)• 

3. Partial Fractions. It is possible to express any proper frac¬ 
tion as the sum of fractions of the following types: 

(0 

w 

A 
I 

flc — a 

Ase + B 

A 

(g — a)" ’ 
m, a positive integer; 

Ax + B 

(cfi+px + q)*' 
p* — 4q<0. 
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'6 a; 4-13) ^ 
3 +2a» 

ZS. 
JSsi^ + x-l 

4. Coatinnation. Multiple Zanear Faeton. If 0(a) contains the 

factor X — a m times: 

G(a) = (x - rt)"*(x), 1 g m, 

where <^(x) is not divisible by x — a, then the given fraction can be 

written in the form ; 

(1) 
g(x) ^ A , A I_. I /(!») 
Q(x) (x — a)“ (x — a)“-» x — o ^(x) ’ 

where/(x)/^(x) is a proper fraction, or zero, and Ai 0. For the 

proof, of. § 5. 

Example 1. 

(2) 
-3x»-2x4-3_.d JB C , 

a^4-x* X* X x + l’ 

for, since <j»(x) = x +1 is here of the first degree, /(x) must reduce 

to a constant. 

We can now proceed as in the last paragraph, clearing equation (2) 

of fractions: 

-3x®-2x4-3= 4(x + 1) + jB(x* + x)+£7x*, 
or 

3-2x-3x*=^ +{.<1 + B)x +(B + C)**. 

This equation will hold for all values of x if id, J5, and C can be so 

determined that 

A =“3, ^4-5 = — 2, B -{■ C ^ — 3, 

Solving these equations, we find 

.4 = 3, B=-6, C=2. 

Hence, on substituting these values and retracing our steps, we find; 

-3x»-2x4-3_3 5^ 2_ 

X* 4- X* X* X X 4-1 

The truth of this equation can be at once verified. 

Example 2. 
X _ A Bx + C 

x*-! x-l''’a?-fx + l’ 

V« bete a? 4- X 4-1, and so /(x) can be at n^t of tiw 
degree. Proceeding as before, we have.- 
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a sm A(ifi + X +1) 4- (Bx + C)(* — 1)» 

XxsA~0+(A — B+ 0)x + (A + J5)a:*; 

A-Cm^O, A-B+C=1, A + R-0} 

A = i, B=-\, 0=i; 

X ^ 1 —x+1 
x» - 1 “ 3(x -1) 3(x» + X + 1) * 

(3) 

W 

Evaluation of the Integral PiAxj^^B)^ »* — 4 g < 0. 
J ^+px + q 

iitiv( When p = 0, g is positive and can be set = a*, and the evaluation 
is immediate, for 

xdx 

X* 4 a’ 

dx 

log(x» + a5), 

= - tan"i - • 
X® + a* o a 

If p # 0, a linear transformation serves to reduce the given inte¬ 
gral to the forms (3) and (4). We can write 

x« -f px 4 g = x® + px +^|y + q fj 

where the positive number, g — p^/4, has been set equal to a*. Next, 
set p 

f = x4^-- 

/dx r d< _1 
x*4p®4g Jt’ + a* a 

2’ 

x*4p®4g 

Similarly: 

tan-* - = 
^4 g —p* 

— i-p)dt 

tan~* 
2x4p 

V4g—p* 

/ *gdx _ nt—^p) 
J x» 4 px 4 g J t* 4 x» 4 px 4 g 

This last integral comes back to (3) and (4), and thus the integration 
is accomplished. 

Example. To evaluate 
J- 

xdx 

x^ 4 4 X 4 9 

a* = 6, Here, «= x 4 2, 

c—^—« r(tzii£ 
^x>44x49 J f*4o* 

^log(x* 4 4X49)--^tan-*5^ 4 G 
VO v6 
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10. 

EXERCISES < 

Express the following fractions in terms of partiai fmeUojm. 

1 

a^-2 

(x+lf 

2a!* —X — 4 
x*-l 

1 2a 

, $si^-2x-i 6 S. 
*■ »■-»> ■ x* — 6afi + 9x 

1. 
, x>-2x + l 

6. 
(a;* - a*)* a;* 

x* + x + l 
8. ® . 9. 

• (x-2f x‘ + l 

11. 

14. 

IS. 

4 a* 
X* — a* 

X 

a* — a* 

Ant. 

12. x + 4 
2x* + x 

X — a x + a aj* + «* 

ST* 
IS. 

a:* — a* 

— 2a^ + 2a;* — 2a!4-6 

(a; - 1)V - a: + 2) 

2afi~h2a!*+2x + 6 

(x + l)*(x* + x + 2)’ 

Ant. + ■ 
a; — 4 

(35 — 1)* a: — 1 as*—a:+ 2 

16. ar +1 
(x + 2)*(a^ + l) 

Evaluate the following integrals, using the method of the text 
not the final formulas. 

IT. 
da; 

18. r(5x-6)dx 
J 3x*-2x+3 '• + 2x + 2 

20. Integrate the fraction of Question 14, 

/-■ 

a/*dx 

x* + 2x+2 

5. Lenuna I. The proof of the theorem about partial fractions 
rests on two lemmas. 

Lxhma I. Jf G(x) contains the factor x — a precisely m times: 

(?(a>)iB(a:-a)”*4.(*), 1 g m, «^(a)^0, 

the fraction can be written in the form: 

(1) S(x) _ A fix) 
0(x) (x—a)" (»— a)“-*^(a;) ’ 

A-^O, 

where the last term is a proper fraction, or tero. 

Eorm the difference, 
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irlwre A is ali7 constant whatever, and reduce to a ocnsuboia de¬ 
nominator: 

■g(«)_ A _.9(x)-A<i>(x) 
0(x) (x — a)” (x — a)"<ft(x) 

If we can determine A so that the numerator of the last fraction 
is divisible by a: — o, then we can cancel x — a at least once from 
numerator and denominator, and on transposing the term A/(x — o)“, 
the theorem is proved. 

The condition that x — a divide the numerator is that x = a be a 

This equation can always be solved for A: 

(2) 

since by hypothesis ^(a)^ 0. This completes the proof. 
The last fraction in (1) is not necessarily in its lowest terms, for 

it may happen that a higher power of x — a can be cancelled from 
numerator and denominator. But no factor of «^(x) can divide /(x). 
For, multiply (1) by (?(x): 

p(x) = A<f)(x) +(x-a)f(x). 

A factor common to ^(x) and/(x) would thus divide p(x). Hence 
g(x) and <^(x) would have a common factor, and the original fraction, 
g(x)/(?(x), would not be in its lowest terms. 

We observe that equation (2) gives an explicit determination of 
A, and thus avoids the computation of the earlier method, § 3, and, 
in a measure, the computation in § 4. 

Example 1. Consider the fraction 

g(x) ^ X® 4- X 1 
<?(x) “ (x - l)(x - 2)(x - 3) ■ 

By the lemma, we can write it in the form 

A , /(x) 
0(x) x—1 0(x) ’ 

ift(x)=(x — 2)(x — 3), gf(x) = X* 4- ® +1. 

3 _3 
^(1) (-!)(-2) 2’ 

where a = 1, 

Hence 
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W« odoid compute/■(«) by transposiog the first term on the r%ht 
mid reducing, and then applying the lemma to the new fraction. 
But the explicit determination otf(x) is unnecessary. We see from 
the lemma that ^ q 

(x - 2)(x - 3) “a;-2 "^a! - 3’ * 

and hence the original fraction can be written ■. 

g(x)^ 3 .BO 

0(x) 2{x — 1)^ X — 2^ X — Z 

Now, we might equally well have begun with the root 2 of G(x). 

Denote it by 5; denote the corresponding function ^(z) by <f>i(x): 

<f,i(x) = (x-l)(x-3); 

and delate the new Ahy B: 

9ib) ^ g(2) ^ 7 . 
.^(h) <^,(2) -1 

Thus B is determined; B = —7. C can be found in a precisely 
similar way; its value turns out to be Hence, finally, 

sfi + x + l 3 7. 13 
(a, _ l)(a3 - 2)(x - 3) “2(x -1) x - 2 ■^2(* - 3)' 

Vhiqtieness. There is really a question of uniqueness here involved. 
How do we know that the B determined in the one way and the B 

determined in the other are the same number ? 
Suppose they were not. Then we should have: 

Q(x) X - 2 
■f i?(x) and 

0{x) 

B' 

x-2 f 

where Ji(x) and S(xj are fractions, each continuous at x 2. Sub¬ 
tract the one equation from the other: 

0 = ~f+Jt(^)-S(x). 

And now let x approach the limit 2. B(x) and S(x) both approach 
limits. Hence B — H => 0; for otherwise the first term on the right 
would become infinite. Thus S' = 3, S(x) s B(x), and the unique¬ 
ness is established. 

In the same way it can be shown generally that the A of formtda 
(1) is uniquely determined. This fact can ^ read off at once from 

the equation - ^^(a) = 0, 
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fliace the latter rejn'esents a necessary^ as well as a rnffidetU, oonditioQ 
that g{x) — A^x) be divisible b7 a; — a. 

Example 2. Let 
g(x) _ 3 as — 1 
0(x) ar* + X® 

Here, a a 0, <f,(x) = a!* +1, ^(x) « 3 ® - 1, 

and 

Thus 3x-l 
x* + X® 

S^=.-l 
m 

_i+JM.. 
X* a? + X 

The next step is most conveniently taken by actually computing 
/(x). This can be done by transposing, reducing, and multiplying 
through by X* + X. Thus we find: /(x) = x + 3. We now deal with 
the new fraction, *4-3 

X* + x’ 

setting a = 0, <f>(x) = x* +• 1, g(x) = x+ 3, 

and thus see that A = g(0)/<l>(0) =* 3; hence 

X 4" 3_3 ^ Ox 4~ -P. 
X* + X X X® 4- 1 

The coefficients,' 0 and D, could be obtained by clearing of frac¬ 
tions and comparing coefficients. A shorter method, however, is 
the following. First, multiply through by x: 

X 4- 3 _ q . Ox® 4- Dx. 
x*4-l'” **4-1 ’ 

and now allow x to become infinite. Thus we see that 0 = — 3, 
and 

X 4- 3 _3 — 3x 4- X) 
X* 4- X X X* 4-1 

Fmally, to determine D, give to x any special value for which no 
denominator vanishes. A simple value is x = 1; thus 

2^3 4-"-^^^, I> = 1, 

and llie final result is; 

3x-l 1.3 3x-l 
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Tl» tmth of iMs equation cam be verified bj rednoibg tiie r%hi> 
band side to a common denominator. 

We notv have at our disposal (t) the method of nndetermipnd 
coefficients, set forth in §§3, ,4; (it) the explicit formula (2); 

(iii) the method of giving to « a number of convenient special 
values, or of allowing x to become infinite, after multiplying the 
equation through by a suitable power of x. The best results ar# 
obtained by a skillful combination of all these methods. 

EXERCISES 

Work a number of the Exercises of § 4 by means of the preseni 
labor-saving devices. 

6. T^tna n. We proceed now to the second lemma. 

Lebcua II. ^ 0(x) contains the factor x'^-{-px-\-q precisely m 

times: 

the fraction can be written in the form: 

m g(a;) _ Ax + B ,_f{x)_ f^landB 
^ 0{x) (x^+px + q)" (x*-Hp®(not both0. 

toAere the last term is a proper fraction, or zero. '' 

Eorm the difference, and reduce to a common denominator; 

(21 g(x) Ax + B ^g{x)-{Ax + B)4>{x)_ 
0(x) (x* 4-p® + ?)"■ (x*-i-px-f g')”'^(x) 

We wish to show that A and B can be so determined that the 
numerator is divisible by x*-|-px-+-g. Divide g(x) and ^(x) by 
x*-i-px4-g; 

g{x) = Qi(x)(x* -l-px -I- g)-f ix 4- M, 

4{x)= Q,(x)(x*4-px + g)4- Ax 4- /t. 

Here, one or both of the quotients, Qi(x) and Qt(x), may be 0, — that 
makes no difference. But Z and M cannot both vanish, for then 
g(«) would be divisible by x< 4- px 4- g, and so the original fraction, 
g{0}/Cf(<xi), would not be in its lowest terms. And similarly, A and 
p ettonot both be 0, for then ^(x) would be divisible by X* 4- px 4- g. 
■M»eontiary to hypothesis. 
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If, ttow, the numerator on the right of (2) is to be diTiaible 

+|Kc + 9, it is elearly necessary and sufficient that 

Lx 4- M—(_Ax + B) (Xx + ft) 

be divisible by *• + pas + 9. Multiply out: 

Lx 4" -M—(^Ax 4" R) (X® 4“ ft)—X-daj* — 4“ XR — L) x — fiB 4* M" j 

and now divide this last polynomial by a;* 4-p* 4- 9: 

-X^_ 

a^+px + q)— XAx^ — (jiA 4- XR — L)x — fiR 4- M 
— X.Aa?_— pX^g — gX-d_ 

j ^— ft 4“ pX)^ — XR 4" L (35 4" 9X'd — ftR 4" A£ 

The last line gives the remainder, and this must vanish identically. 

Hence we must have; 

(— p 4“PX)-4 — XR 4“ -L “ 

qkA — pR 4- = 0. (3) 

These are two linear equations for determining the unknowns, A 

and R. They are non-homogeneous, since L and M are not both 0. 

Their determinant is: 

— p 4- pX — X 

qX — p 
p» ~ pXfi. 4- qX*. 

Its value is not 0. For, we can write it in the form: 

■+p(-e)+9 

provided X ^ 0. Now, the brace cannot vanish; for then the quad¬ 

ratic polynomial -f- p* 4- 9 would have a real root, x = — p/X. If, 

on the other hand, X = 0, the above determinant reduces to p®. Since 

X and p are not both 0, the determinant does not vanish in this case, 

either. 
Hence equations (3) admit, in all cases, one and only one solution, 

and A and R are uniquely determined. They are not both 0, for 

then L and M would both be 0. This completes the proof. 

It may happen that the last fraction in (1) is not in its lowest 

terms, the numerator being divisible by a power of x® 4- P® + 9- 
no factor of <j>{x) can divide the numerator. 

11® — pV4-9^* = A®j(^-j) 

Example 1. Let 
x® 



CALCUIX® 

Ehien v« b&ve: 
_a)* •__ AX+ B Cx + D 
(sc? 4- X + l){ofi + 1) sbS + x + 1 x»4-1’ 

Krat, multiply through by x; 

_+ JBx Ck^ + Dx 
(x* + X 4-l)(x2 4-1) x*4-x4-1'^ x*4-1 

'Tow allow X to become infinite, and we find: 

0 A + C = 0. 

Next, give to x the simplest possible value, namely 0: 

i%) B + D = 0. 

The next simplest values for x are 1 and — 1: 

«i) or 2^4-2N4-3C4-3D = 1 
6 u 2 

iv)\=-A + B+ or -2A + 2B-C+D=^1. 
2 2 

From (t) and (ii): 

C = -A, D = -B. 

Substituting these values for 0 and D in (iii) and (tv), we get: 

-^-N=l, 

-^4-N = 1. 

lenoe A^ — l, S = 0. Moreover, 0 = 1, D = 0. Thus 

_^__ — X X - 

(x* 4- X 4- l)(x® 4-1) x*4-a:4-l X24-I 

Sxample 2. Let 

^ 
Oix) (x*4-x4-l)* 

lore, ^x) is of the 0-th degree, and it is simpler not to use tho. 
muna, but to proceed directly by division: 

X — 1 

X* -f- X -4- l)a? 
a* 4- gs -p a; 

— X* — X 

— X* —X —1 

1 
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Henise 

and 

j _1. 

a^+x+l '*'si^ + x + l’ 

^ 1_■ x—1 

(a^ ^x + iy"^ (a^ + x + iy'*' a^^+x + 1 

This method is also simpler in such oases as 

gjx) _43? — a; + 5 

G(x) (2x~ 3)‘ ■ 

EXERCISES 

Express the following fractions in terms of partial fractions. 

1 X* — X® 1 3 ® 
‘ (2x2- - X 4- 2j(x^ — 2 X + 3) X® + 2 X® + X X* + a* 

A 1 X»-X2 0 ®‘~“‘ 
■ (a^ + x“ + x)* (2x2-x + 6)* (x2 + a2)' 

7. Proof of the Theorem on Partial Fraotions. Let g(x)/0(x) be 

a proper fraction in its lowest terms. If 

Q(x) = (x — a)’'<f>{x), 1 ^ m, 

where tf>(x) is not divisible by * — o, then the fraction can, by the 

repeated application of Lemma I, be written in the form ; 

g(x) I ... I I 
0(x) (a? — «)"* (x — X — a <fi(x) ’ 

where the last term on the right is either a proper fraction in its 

lowest terms, or zero. Ai cannot vanish; but any or all the later 

A’a may be zero. 

Similarly, if ,> 

Q(x) »(*’+/»! + 1 S »»» p* — 4 5' < 0, 

where <^(®) is not divisible by »* + yw + 9, the fraction can, by the 

repeated application of Lemma II, be written in the form: 

g(g)_ AiX + Bi ^;a!+JBa _ _ . o)(a!) 
0(X) {X^+-pX + 9)" (*2 -i- JM! + 9)"-i ^(x)’ 

where the last term is a proper fraction in its lowest terms, or zera 

Ai and Hi cannot both be zero; the later ..4’s and H’s are sulgect to 

no restriction. 
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Since in each case the degree of <l>(x) is less than that of 0(z), 

it is clear that sufficient repetitions of the abore processes will 

finally reduce the original fraction to a sum of partial fractions, 

and the theorem is proved. The representation is unique. 

8. Integration of Sational Fnnolions. By a rational function of x 

is meant a fraction, or a so-called “ complex fraction,” like 

x_a 

1 n I .ax -2x + aas*- 
X x_^a 

a x 

A rational function, R{x), can, therefore, always be reduced to an 

ordinary fraction: * 

and hence it can be represented either as a polynomial or as a proper 

fraction or as the sum of a polynomial and a proper fraction. 

We can now show that the integral of a rational function: 

J* R(x)dx, 

can always be evaluated in terms of the elementary functions. For, 

the polynomial part presents no difficulty, and the fractional part 

can be expressed in terms of partial fractions. The latter can be 

integrated as follows. 

The integrals of the types /' dx /(.4a! -f B) dx 

si^ + px + q’ 
p* — 4 5 < 0, 

are familiar to us. There remain only the integrals 

J {ai> + px + q)’' 
* Similarly, a radonal function of two or more Tariables is any expression 

that can be put together out of these variables by means of the four gpeeiet, — 
addition, subtraction, multiplication, and division, — t.e. it is a polynomial, or 
a “ simple ” or “ complex ” fraction. It can always be reduced to a polynomial 
or an ordinary fraction. Thus, for two variables, 

S(x, v) = 

where p(a, y) and 0(x, y) are polynomials. 
0(af, V) 
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To deal with these latter we make first the substitation of $ 4i 

t^x + S, 

Thus the above integral is reduced to a linear combination of the two 

integrals: 

/o 

tdt dt 

+ a»)’ {ti + a*)"’’ 

The first of these integrals can be found by the substitution 

z = t® + a®. 

The second is obtained by a reduction formula: * 

/o 
dt t 

, + ■ 
2m-3 r 

-2)a®j(f 
dt 

(t® + a®)" (2 m — 2) a® (<* + a®)"-i (2 m - 2) o® J (t® + o®)"-® 

On replacing t by its value in terms of x this formula reduces 

substantially to Formula 71 of Peirce’s Tables. 

Thus the evaluation is complete and the theorem is proved. 

9. The Integral J'72 (sin ac, cos x)dx. 

By means of the theorem just established it can be shown that any 

rational function of sin x and cos * can be integrated. Make the 

substitution 

9J = 2 tan-® {, — w < X < w. 

2dt 

’l + «®’ 

(1) 

Then 

< = tan 

dx- 

n ■ X X 04- X .X 2tan 1 x 
sin X = 2 sin - cos - = 2 tan - cos® - =-2—, 

2 2 2 2 Bec®|x 
or 

(2) sin X: 
2t and C08X = 

1-2® 

l + <®’ " ! + «• 

On substituting these values for X and Y in 72(X, X) the result 

is seen to be a rational function of t: 

72 (sin X, COB x) = r(t). 

/* 2 dt 
X(sinX, coax)dx=s integral of a 

rational function of t. 

* Reduction formulas play an important rOle in systematic integration, and 
It is well to treat them as an Independent subject, At the present moment the 
student needs only { 2, in Chap. Q, which he now should read. 
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Smm^^ Consider the integral 

(8) dx 
|o| f&l. 

+ 6 cos*’ 

On making the substitution (1) and reducing, we have: 

2dt 

h a + 6 + (a — h)t^ 

There are two cases, according as a + b and a—b have the same 

sign or opposite signs.* 

Case I. 0 < ^ = A^, — »r < » < *■. 
'a — b 

2dt 

“|-s h 

dx 

■ ■ =-?-tan-«—, 
+ (a-6)^ A’ 

h + b cos a: (a — b)A 

If a — b is positive, the formula can be written: 

dx 

tan-ij*^j. 

(5) f_^_= —J==. tan-»f tan h + ^>0> 
^a + beo8X Va^—b^ V’a + b 2/ \a —b>0. 

But this last formula is false when a + b and a—b are both negative, 

for then ,—r-r 

(a _ 6) J?LL| = _ Vo^ - b*. 
' ^a — b 

A form which is general, comprising all integrals which can occur 

under Case I, is the following: 

(6) 
da; 2 Va- — b^ tan j x 

+ b cos X a -f- b 

Casell. 0>i±I' = -A% -7r<x<n. 
a — b 

A 

2dt 

(7) 

“b b -f“ (a — b) f® 

dx 

2 r dt 

a — bj — 2 
flog A* (o-b)A *t + A 

X — A 
I — ■■■ -■ ■ ■ I ■■■ 4V/K ■ 1^1 - • 

+ boos a; (a—b) A tan^aj + A 

If a + b is positive and o — b, negative, the formula can be written* 

*'The oases in which a and 6 are numerically ea^ S'c dealt with directly. 
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(8) 
dx Vft-f-o-f-V& —otan^a; 

H-ftoosa: V6* — a* ° V6 + o —V6 —atan^ 
:log X |&4-o>0, 

x’ l& —o>0. 

But this formula is incomplete, failing to include, for example, the 

case o = 4, 6 = — 6. The following form is general: * • 

dx 1 
(9) :log 

a + b + Vy — tan ^ x 

+ b cos X Vi* — a® a + 6 — Vh* — a® tan ^ ar 

EXERCISES 

Evaluate the following integrals, using each time the method of 

the text, not the final formula. Check by the formula. 

1. 

4. 

7, 

10. 

12. 

f - ^ . 
^5 + 3 cos X 

ff= 

/3- 

dx 

5 cos a; 

dx 

cosx 

dx 

2. 
r dx 

3. r dx 
j 3 -f 5 cos * J 4cos* — 6 

6. 
« 

r dx 
6. 

r dx 

J 5 + 4 sin * J 12 sin * — 13 

8. 
c 

c ^ . o r dx 

/ 1 -f cos * J 1 — sin* 

2 sin X + cos x 

dx_ 

sin x + 2 cos x fl-si 

11. 

13. 

r_^ 
J 1 + sina; H 

_^ 
2—5 sin a? 

+ coax 

dx 

+ 3 cos* 

X4. C-^-IB. f-16. C--^- 
J cos* —cos « J sin a —sin* J 1+cos a cos* 

17. Show that 

dx 

h + b sin* 

2 & + otaD^* 

Va* — 6* Vo* — 5* 

1 
ilog 

b — V6* — g* + g tan ^ * 

Vb’ — o* b + Vb* — g* + g tan^* 

according to which formula gives real results. Obtain formulas for 

the exceptional cases. 

• Of., however, i 8, footnote. In sU out formulas of integration the invOTSe 
trigonometilo functions are restricted to the principal values. 
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18. Show that 

J a-^ It oosx + oaiax v'a* _ ^ _ c* VflF— 6* — d« 

or ^ loe Vd^ + c^-a^-c-(a-i)taaix^ 

■y/d^-f. c‘— Vb‘ + (^ — a‘ + c + (a — d)t&nj^x' 

according to which one of these formulas has a meaning. If 

neither has a meaning, obtain a formula that does have one. 

19. Show that 

f_^_= Wa+ctan5V 
^ a(l + cos ar) + c sin a? c ^ 2/ 

20. Evaluate by the present method 

sec a; die and ^cacxdx. 

21. By the aid of the identity 

a sin aj + b COB a; = ^ cos {x — «), 

where .4=Va* + 6*, Bina = a/.d, co8«=s6/.4, 

obtain formulas for the integral of Question 18. 

10. Integration hy Inganions Devices. Because every rational 

function of sin x and cos x can be integrated by the method of the 

last paragraph, it does not follow that that method is the simplest 

one in a given case. There may be an obvious substitution or 

reduction which leads at once to the result. 

Example 1. /4 
sin a! da; 

4- b cos a: 

Here, the numerator is substantially the differential of the de* 

nominator: 
d(o 4- b 008 a;) = — b smasdaj, 

and so the substitution 
s = a 4- b COB aj 

leads immediately to the desired evaluation. 

Example 2. I — 
J « 

cos a? da! 

4-b COSO! 

Divide the numerator by the denominator aoeording to the 
methods of firsbyear algebra: 



, I ,- < 4 t. < V . ■’-i’ '> 

0XV(0sm> xmmma oyr i^evm&ATioH 

00>g a 

tt+ieos* i h{a'\-bwix) 

Thus the integial « reduced to the integral etudied in the tert. 

Example 3. J’e®8* xdx. 

Here, ooB^xdxsscoB^xcoBxdssB (1— Bin*x)daiaXf 

and BO the substitution e = sin* avails. 

Example 4. 
/a si 

dx__ 

sin * — 4 008 * 

3 sin* — 4 cos* == 5(| sin * — f cos*). 

Let cos«= I, sin«= f 

Thus a is completely determined, and 

3 sin * — 4 eos » = 6 8ia(* — a). 

The integral is hereby reduced to 

J'CSC ^ dif>. 

It is not, however, merely to trigonometic cases that these re¬ 

marks apply. Consider 

Example 5. J 

Here, the method of partial fractions would be absurd, for 

(£(*• -f. o*)= 3 dx, 

and the substitution z =* ** -f «* avails. 

. - —3w)cto 
Example 6. J 

Substitute z = **. 

The student should now turn back to the paragraph on Integr^ 

ticm by Parts, Introduction to the Calculus, p. 243, and study it 

thoughtfully, working the examples afresh, in order to realize both 

the possibilities and the limitations of that method. 
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I /*008*gdg 
J 2 — OOB* 

_ /*8majco8a!(ia! 

EXERCISES 

2. 

OOBX 

5 rain a;— coso;^ 

^ coax —ooaa 

7. /*-- 
^ 2 sin* X —3 cos* x 

r OQsaxfa; 

^ 7 +13 sin » 

4 r sing 008 a!( 

’ ^ 4 sin a? +1 

8 r 2 cos a! — 3 sin a; 

" ^ sin j8 — sin as 

/: 
2dx 

11. 

13 

16. 

19. 

22. 

26. 

3 cos 2 as — 2 

xdx. 

dx 

008*33 

6. 

10. 

12. 

sdae 

11 ' 

dz 

14. /’ das 

008*1 

c dx 

1“ 
Jsin- 

/* as‘dz 

/' e*das 

e« + e-' 

/ z coszdas 

logzdas 

r das 

/l-e- 

/« 

/ 

j4* cos* z + .B* sin* x /dx 

• a x 
8iii--sin- 

008*1 

r dx 

J Bin’z /xdx 

6-3as* 

2 ■ 2 

sdz 

16. 

16. 
• as* 

20. 

23 

21. 
dx 

e"“* COB bzdac. 24. 

xe~^dx. 27, 

e* + e-* 
» 
«-»* sin te dz. 

•/ 
. J'alogVa- 

■f- 

/ 
. ^j-“*8i 

20. J'log(a*—sfi)dx. 

Bin xdx. 

1* -f- as* das. 81. /log X dx 

(! + *)»■ 

zlogz 
33. /log xdx 

X 
34. xdx. 

U. Integral ^ B(», Va + 6* + cas*)da& 

The int^psal of any rational funetion. of x and the square root of 

a qoadxatio poly3alt»nial^ 
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(1) y = Vo 4- 6*'4- cai*, c ife 0,* 

can be eTuloated in terms of the elementary functions. For, 

(2) a + te + c**=c|^a: + Ay+if|^| = c(«*±^*), 

where t = x + ^ and A’‘ = ± — 
2c 4c* ’ 

the lower sign being chosen when 4 oc — 6* is negative. 

There are in all three eases to be distinguished. 

Case 1: 4 oc — b* < 0, c < 0. Here, 

y= V^Tc V.d* — «*, 

and the substitution: 

t = w4 sin ( or « = A cos fl ) 

reduces the integral to the form treated in § 9. 

dx 
Example 1. /; c < 0. 

Vo + 6® 4- cx* 

Here, we must necessarily have 4 oc — 6* < 0, since otherwise the 

radicand would take on no positive values. 

b , V€P —4ac 
t =x * 4 

2c’ -2c 
>0, 15= .4 sin ^; 

dx = dl=- A cos 6dB, 

dx 

Vo 4 bx 4 cx* = V — c A cos 6; 

/ Vo 4 bx 4 cx* V — c V— c Vb* — 

-b 

4ac 

The solution could, however, have been abbreviated by writing 

the integral in the form: 

v 4ac bV V-c 
sin~*- 

4 
'b*_—_4ac 

4c» 

* If e = 0 and b ^ 0, tbe same substitution, (I), is applicable, the rationaUca- 
tion of the integrand now being immediate ; 

b b 
and the new variable of integration being y. 
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piBsy —2, 

!]%jen tibe eqtistHni of &e pencil will be: 

<2) p — X? a» 0 or y — 2 =! X(» — 1). 

A variable line of this pencil cats the curve in the fixed point A 
ai^ a second, variable point P: (x, y). The coordinates of P are 

found in the usual way by eliminating y between (1) and (2) : 

(3) Vl + * -h 2 a!* = \(x— 1) + 2, 

l+a:4-2itf* = X*(a:-l)» + 4X(a!-l) +4, 

(4) -3 + a: + 2a!» = A*(iB-l)* + 4X(a!-l). 

We know that one root of equation (4) must be a; = 1, since every 

line (2) goes through the point A : (1, 2), and hence it should be 

possible to separate out a factor x—1. It is at once obvious that 

this can be done, since 

— 3 + a: + 2a5* = (a; — 1)(2 x + 3). 

On dividing (4) through by a:—1, we have: 

(6) 2a! + 3=.X*(a!-l) + 4,X 

Hence 

(6) a;=- 

The value of y is found from (2) by substituting this value of x: 

(7) y = 

Thiu X and y have both been expressed as rational functions of a 

parameter X; the conic has been rationalized. Conversely, X can be 

expressed rationally in series of the coordinates of P: (a;, y), for 

from (2) we have 

(8) X=: 
X — 1 

The method is general, and can be applied to any conic, the ver¬ 

tex of the pfflicil being taken at an arbitrary point on the oonie. In 

the case of a hyperbola, the pencil may be the lines parallel to an 

asymptote.* 

vThe method o( ratSoBaUntion does not In general apply to algebnMA ounree, 
0(«, y) as 0, of degree bigber than the second. Those corves to which it does 
amdv US called aaldursaL 
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We can qow eTaluato the given int^^cal 

' '' 2 — \* (2 —X*)* 

(10) f-^== f = 
»/ (fls—l)Vl+* + 2a!* t/—6 + 4:\ 

, ,_4VI +* + 2** — 6* — 3 
= ilog--—-- 

X — 1 

The Oenerai Gate; 

_^_ 
— p)Va + 6a! + ca!*’ 

can be treated in the same manner. 

0 < a 4“ 

The curve 

(I-) y=Va + 6a!4-c** 

ia out by the line x — p = 0 because of the condition of inequality 

imposed. It will be convenient to introduce the notation : 

f(x) — a + bx + cafi. 

Then • f(j,) > 0, fip) « 6 + 2 c,>. 

Cut the curve (!') by the pencil 

(2') p-Xg = 0, or y-v7W = M*-p)- 

The computation is parallel to that in the numerical case above 

considered. We find : 

^ ^ - 6 - cp + 2v7fp)X - pX» cv7^) -/(p)\ + V/(^X* 

c - X* ’ ^ c - X* 

X ^ Va -f 6a! + ca!» - V/(p) ^_2rcV7M-/'(p)A + ViXi^X«1dX, 

x-p ’ (c-X*)* 

(10 
dx 

(x — p)'s/a 4- 6a! + ca;* 

„ 1 wV7WVo + 6a!4-c3!«-lr/'(p)(a!-p)-/(p) 

VTw 

where /(p) »= a 4- 6p 4* <ip* > 9- 

« The ex^reodon 6 4- 2 cp occurs later in the computation, and can be abbre¬ 
viated as /(p). Mo property ot the derivative is here involved. It appean to 
be mer^ an accident that the abbreviation is possible. 
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This formula cau also be derived from the result of £hc, 2, $ 11, 

\ij means of the substitution x — p = \ ft. The method is not, how* 

evet:, so simple as would appear at first sight, since two cases must 

be distinguished when is taken out from under the radical, ao* 

cording as f > 0 or t < 0. 

Eseamide 2. Consider the same integral for the case that the 

conic is not cut by the line x — pat 0. Here, c may be positive or 

negative; the conic, a hyperbola or an ellipse; but this conic must 

cat the axis of x in two points, x = a and x=^. Let a < /S. 

To rationalise the conic, choose a pencil of lines with its vertex in 

the point (a, 0): 

(11) p — Xq = 0, or y = \(x — a). 

Suppose that c < 0. Then the conic is an ellipse, and x lies be* 

tween a and /3. We have: 

a + bx-t- cx^ =(— e)(x — a)(/8 — x), 

where each factor on the right is positive. Thus 

V— c(* — a)(/3 — x) = X(x — a), — c(fi — x)» X\x — a), 

- ^ - c/3 - c(/3- a)X. 
-,c ' X^-o ' 

> *-« (A*-c)* 

(12) fir- 
dx 

{x — p)'\/a + 6® + c®* 

/* -2dX 

V (« - />)^* -cifi'-p) 

Here, a — p and p — p are both positive or both negative, and the 

value of the last integral is 

rzlJ «-p ...tan-YXJ... 
a~pM-c(^-p) [\-c(fi-p)J 

We have, then, finally: 

(13) f-^ 
J (®_p)vir+ 6® + c®* 

V-/(p) 

^(p) as O -1- 6p + Cp* < 0* 

.tanV 
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If c > 0, the ctHuo is a hyperbola. We hare: 

a + 6® + c** = c(a! — a)(® — j8), 

where the parentheses are either both positire or both negative. 

The formal work proceeds as before, and we arrive at the integral 

(12) . Here, however, a — and yS — p have opposite signs, but c is 

positive. Hence the subsequent work is unchanged, and formula 

(13) covers this case, also. 

If p = a or /?, the integration can be effected directly by the above 

substitution. The result is algebraic. 

Example 3. / dx 

(®2 q)y/a + bx + c®*' 
— 4 3 < 0. 

If the roots of the radicand are real, the rationalization used in 

Example 2 is expedient. The computation can be carried through 

with elegance; but the final result is a complicated formula. 

When the roots of the radicand are imaginary, the problem is 

still more complex. A method of treatment which applies to both 

cases consists in making a fractional linear transformation of x 

whereby the linear term in each quadratic polynomial is eliminated.* 

This can be done piecemeal. First reduce the radicand to the form 

1 + : 

/ __ 

(®2 H-p* + q) Vl + »* 

Next, make the linear transformation; 

t_ x + h 

1-hx’ 
X 

t-h 
1+ht’ 

where h is determined by the equation: 

Then 

1 4-a* 

p/t® + 2(1 — q)h — p = 0. 

(l-ffe»)(l +P) (1 + A«)dt 

(1 + hty ’ (1 + At)* ’ 

x‘ +px + q 

A=aK‘—pk-\-q>0, 

(1 + htf 

R =» 1 + pA 4- 3A* > 0 5 

Si 
dx 

'+!>* + 3)V'l + »• 
-vr+1® Sr ± (1 -{* ht) dt 

(.A + Rt*) Vi + «*■ 

• Cf. Chap. IX, §4. 
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where the lower sign is to be chosen in case 1 + ^ is a a^gatiTe 
quantity. 

We are thus led (on replacing t by x) to the integrals; 

/i 

_^^_xdx_, 

(A + jBaiS)VI+l^’ J (A + Bx^)VTT^’ 

The integrands can be rationalized as follows. Gat the oonio 

= 1 + 

by a pencil of lines parallel to an asymptote: 

(14) ^ y=-x + \. 

There is no difficulty in carrying through the details of the work, 

but the final result is in form less simple than that obtained by a 

device. It is obvious that the second integral can be readily evalu¬ 

ated by means of the substitution: s=Vl-(-»*. And now the 

first integral can be reduced to the second by the transformation: 

y = V®. 

The method applies to the more general case that the radicand is 

C -b Dx‘, where C and D are any numbers not both negative, and 

neither zero. The result is as follows: * 

,.5) 
dx BC-AD\ 

A{C+Dx^))' 

J_ ^ loc V(7 -f -b xyJjAD -BQIA 

2A^AD-BC ® VC-b - xy/{AD - BC)/A 

(16, xdx 

{A + Bx^)^C+Da? 

1 / B 

B^AD-BG 
tan"’ 

or ^ i^^VCT£^r-V(SC-AD)/B_ 

2B^BC~AD VcTlO^+V(,BC - AD)/B 

* Fonnulas 2^, 230 of Peirce’s Tables are simpler than these; hut tiie tan~i 
formulas there tabulated are wrong except under restrictions not there stated. 
Thus the first formula, 229, is true when a' > 0; but when a' < 0, there should 
bo a — sign h^ate tan~t. Again, no one of the formulas 220 covers the case: 

o'<0, o'e —oc'<0. 
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EXERCISES 

1. By means of the rationalization set forth in Example 3, (14), 

when c>0, namely, yss—scVc + X, obtain Formula 160 of the 
Tables: 

f—7—■—__^»=-^lQgfVa + 6a! + 03!*+ a;v^4.-A-Y 
Jva + bx + ca? Vc V 2Vc/ 

2. Use the other asymptote, and sho'w that the result thus ob¬ 
tained reduces to the above. 

3. Prove the following identities for the principal values of the 
functions entering. 

(а) tan~* u = sin-‘—— ; —oo < u < + no ; 
Vl + M* 

(б) 2 tan~‘u = tan~*-—, — 1 < m < 1. 
1 — u* 

fcl tan~‘u = co8~*-~=.» 0 g « < -f- so. 
^ ^ VI -f m‘ 

4. By means of the rationalization illustrated in Example 2 

evaluate the integral 

dx 

27 
.ilns. — 2 tan' 

■'V- 
— X 

+ 3 

6. Beduce the answer in Question 4 to the form given by the 

Tables, Formula 161. 

6. Compute the integral: 

/i 
dx 

(8-4- 129; + 6a!*)V6 -4-6 *-4-2** 

7. Show that the substitution of § 9, 

A = tauf, 
2 

whereby sin $ and cos 6 took on the forms 

sin® =r 
2A 

1 +A*’ 
003$ 1-A* 

“l-fA*’ 

amounts in substance to the rationalization of the circle 

St* + y’ - 1 

by means of the pencil of lines through the point (—1, 0), namely: 

y « A(* +1), 
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S. ^TaJaate; /’-- ^— .. p = a ot 
J (x~p)Ve(x-a)(x-fi) 

9. Give all the details of the proof of Formulas (16), (16), con- 

sideriug, vheu necessary, the case that cb < 0. 

13. Ooneliuioa; the Aetoal Compatation. 
JR(x, y) can be written in the form: 

Any rational function 

where g{x, y) and Q(x, y) are polynomials. If 

y = Va + 6* + ca®, 

the even powers of y are polynomials in * and can be replaced by 

these values. The odd powers can be written each as the product of 

y by an even power, and the latter factor can be replaced by a poly¬ 

nomial. Thus 72 reduces to the form: 

B(x, y) = , 
C{x) + yD{xy 

where A(a5),. . . , D{x) are polynomials. 

The denominator can be rationalized in the usual way by multi¬ 

plying numerator and denominator by G — yD. Thus 

^{x,y)=p(x)+y<T{x), 

where p(x), <r{x) are rational functions. Finally we can write: 

■S(*, y) = p(x)+ t(x) 

where t is rational. 

Turning now to the integration of 72: 

we have first the integral of a rational function, and the method of 

partial fractions, as above set forth, leads to the desired evaluation. 

In the second integral, let r(x) be expressed in terms of partial 

fractions. We are thus led to integrals of the following types: /as* da p dx r_^^ xdx ^ 

y ’ J (» - #>)V J +7W-f 9)V J (ii^ +l>a> + q)^‘ 
'l^ese integrals are computed by the aid of Seduction Formulas; 

Vi. Chap. IL 



QESSllAL MBTfiODS OF INTEGRATION 

lA IntegntioB by Parte. Tbe method is contained in the fomula 

(1) 9 

Introduction to the Calculus, p. 243. The cases to which the method 

applies form a restricted class, 'but one which, in an extended study 

of integration, must be recognized. 

The method is best studied through typical examples like those 

of the paragraph to which reference has been made, and the student 

should now review that paragraph. There is little point in multi¬ 

plying examples here, since such examples would carry with them 

the direction to use this method, and the whole difficulty lies in the 

fact that, in practice, the student is not told when to use the method. 

For this reason he should strive to detect those integrals in the mis¬ 

cellaneous list at the end of the chapter (cf. also § 10) which are best 

evaluated in this manner.* Perhaps a single example may be useful. 

Example. To evaluate the integ^l 

I=Jxtan-i^^da;. 

Let u = tan-i , dv = xdx, 
a® 

the object being to eliminate tffie transcendental function through 

differentiation. Then 

du 

and we have by (1); 

2 xdx 

a*-f (a* + 

1= 
a:* + a? 

a* 

a^dx 

To evaluate the latter integral, let y = x®: 

a* + (o* + y)* 
= I log [a* -b(o* + y)*] — tan-® «V+y. 

of 

* The reduction formulas of Chap. II are frequently presented as illustrations 
of the method; but they are spurious illustrations, since the direct manner of 
arriving at them is through the difEerential formula 

(](tie) = u dv-(- e du, 

and not tbrou^ its integnd form, (1), of the text. 
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•* tan*‘ dx » tan-* ^Ldl^ _ ^ log [a* + (a* + 
a* 2 a* 4 

B^oe, finally, 

/• 
The student may like to evalviate 

f as* tan~* — '^•^dx. 
o* 

EXERCISES ON CHAPTER I 

Evaluate the following integrals, using the methods, but not the 
formulas, developed in the text. 

xdx „ r(e^ — e~*)^ dx 

I Va* — 

4. 

7. 

10. 

13. 

16. 

18. 

— &)ds 

Vs 

' e-’dx 

«* + C-* 
8. 

’ d0 
11. 

6 — 8in20 

’ xdx 

3 J'xcoaix^dx. 

g Acosax-sinfa^ g 
»/ a + /S t/ ** 

/v'rf 
rzi cte. 9. 

3® ./ ®log®* 

/ cos S 

cos 20 

^ log (1 + ® + sc®) d®. 

r*®ci*. 17. 

14. 

r I——2' fs^taxr^xdx. 17. f 
J l + taxie J J (!-*)• 

r 19 r_m 
^ (1 + ib®) tan-* * ^8in®0 —2 • 2co8®0 

*0- ^®sin-*'\/j-;^d®. 21. J*e~^{2x—3af)dx. 

82. ^cos*0(i0. 23. ^®tanir®*d®. 24. 

88. ^ ~ —d6. 86. f einpxcoa qxdx. 
Jl + 8m0 + OO8 0 J 

oo /* (1 + a cos 0) cW /* ,- 
* J (l + a®)cos®0 + i' *®- J (“ ^- *) lofi (* + - **) <*^ 

Vo*>+ 6® 4- o® sin« 0 SO. i 8inm0ainn0cl0. 
COS0 
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/a! + sin a; 

1 + cos® 

CSC"' X dx. 36. 

l + 39. 

33. 
c 

C ^ 
1 sin'^tf 

34. 
c 
j* e"*6in®»d*. 

36. 
c 
j*xe~'^dx. 37. 

« 

r dx 

/ 1 + 7 cos ® 

/tap 

1- 

ta.nxdx _ 

. — tan*® 

41. f (a® + ®’) log (a* + x^) dx. 42. (*-^ 
J J fa®- 

f-- 44. fe~‘ sin (nt — y) 
J o' - 2 or cos 6 + r* J 

40. r s'Par'fa 
J sin (a+ x) 

’ (r cos 6 — a) dr 

[o' — 2 ar cos 

e"' sin fnt — v") 

- d®. 46. 
a* + a* 

I 

xe!^ msbxdx. 

f'lof'y/l-j-a^dx 

{1-xy- 
dx 

«\/l + X® //’ d® 
®e“*cos6®d®. 50. I—-—= 

J V® + VI - ® 

61. ryiT^+vf^d®. 62. r-^ 
»/ VI + ® — Vl — X J (® —2)V®® — 

63. Compute the value of the definite integral 
Sir 

_ 
J 5 + 3 cos ® 

4® + 3 

Ans. 1.1071. 

54 Compute the value of the definite integral 
fir /dx 

3 + 6 cos X 
^ns. 0.27466. 



CHAPTER II 

reductioh formulas 

1. The Integral J'Bm’'xooa'^xdx. 

We begin by taking the dijferential of a function of the same 

type SIS the integrand: 

(1) d (sin' X COB/* x)= V sin*^‘ x cos/*+* xdx — fi 8in’'+‘ x cos**"' x dx. 

If we integrate each side of this equation, we obtsiin a relation 

between the integrals 

ain'^‘a!C08/‘+‘!Bda!, sin'+ia: coa>^~^xdx. 

Thus if we wished, in the given integral, to increase n and decrease 

m (or vice versa), we could effect the result. But this is a very 

special smd relatively unimportant case. It does not enable us to 

chsuage one of the exponents without changing the other. We are 

led, therefore, to make a trigonometric reduction. Write 

cos**''’* X = cos'*"* X cos* * =! COS'*"* X — COS'*”* X sin* x. 

Then equation (1) becomes: 

(2) d(sin'X cos'* *) = f sin*^**cos^-*xdx — {fi + v) sin’'"'-* x cos'*”*xdx. 

On integrating this equation, we obtain a formula whereby the 

exponent of the cosine factor is unchanged, but the exponent of the 

sine factor is changed by 2. Let 

Then 
flin*"‘a5co8*+*a5 

' *4" I ^ . — 1 = m. 

s(» —1)J*Bi sin*"** oos"»da5 ■ -(n + rni)J*Bi sin”* cos" *d*^ 

(8) J*8in*»cos"*d» 

Bin*"**oos*+** , n —1 
• + 

n + m n + TO, 
8in“”*»ooe"*d*. 
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. In i^irti^ilar we obtain on setting m » 0: 

/* • » j Bin“~i«;oo8!t , n—1 , 
(4) I 8in"a!clar =-^-1—-— i Bin"“®a5(to. 

Thus for n = 2, 4 we have: 

X dx =* — ^ sin X cos js -J ®; 

J’am*xdxs*~\am*xcosx + ^J'sin^xdx 

= —\ sin** cos * — I sin * cos x + ^x, 

and by setting « =» 6 the student can now verify the result of Ex, 5 

in Chap. IX, § 8, of the Introduction to the Calculus. 

We must warn the student, however, against the stupidity of 

apptying any of these reduction formulas when there is an obvious 

short cut Thus 

J sin*a;d* = co8**)d cos* — co8» + I cos**, 

and to use Formula (4), n = 3, to evaluate this integral would be 

much like multiplying 700 and 800 together by logarithms. 

If n is negative, we wish to increase it, and so Formulas (3) and 

(4) should be used backwards, t.e. solved for the integral on the 

right-hand side. A neater form for the result is obtained by going 

back to (2) and setting 

V — 1 = — w, ^ — 1 = m: 

(S) 
/cos” xdx ^_cos”** * I n — w — 2 Ceos" xdx 

sin"* (n —l)sin"”** n —1 ^ sin"“*» 

(6) 

On setting m = 0, we have: 

dx coax h + rt — 2 r dx 

n — ij sin"~* sm" X (n — 1) sin"“* * 

If in (5) n and m are equal, there is a simpler formula. Here, 

cos"* 

Hence 

(7) 

sm”* 
= cot" X = cot"”* * (esc* * — 1). 

/ COt”*Cl* I 
cot"”** C 

cot""**d!*. 

In all these formulas, n and m may be fractional or incommen¬ 

surable. But in that case the given integral cannot in general be 
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evaluated, and so the fomidas are important diiefly in l^e oacMa tittt 
n and m are integers. 

Formaia (2) and the oorresponding integral relation are always 
true. In passing, however, to the ^ter formulas, a division has 
taken place, and it is tacitly assumed that the divisor is not zero* 
If it were, the resulting formula would have no meaning. Thus no 
danger can arise, for a formula that has no meaning cannot lead to 
a wrong result. Whenever one of these formulas has a meaning, 
it is correct 

EXERCISES 

Obtain the following reduction formulas. 

■ . j sin*"^* X cos"'* X , m — sm*® cos" xdx=n--1- 
m + n 

cos"*d* = ^ 
m 

am* 

/“ 

/■ /sin" X di 
C08"« 

/’ dx 
cos"® 

ytan-®d® = ^5^-Jt 

m 
sin"®oo8"'^®da!. 

m /■ C08"““*dl!E. 

(to — 1) cos"”* X TO 

sin X .TO 

TO —n—2 /"sin"xdx 
cos""* X 

. — l)C0S“”‘x TO- f/^ 
dx 

COS"”*X 

tan""* X dx. 

S. Obtain the formula of Question 2 directly by starting with 

d(8in® COS'*®). 

7. Obtain the formula of Question 4 in a similar manner. 

8. Check the formulas of the Exercises against the corresponding 
formulas of the text by setting ® = — y. 

8. Obtain the formula of Question 5 by starting with d tan*' x and 
making a suitable trigonometric reduction of the result. 

10. Evaluate the following integrals: 

(«) I cos*xdiB. (b) ^ J’ cos*xdx. (C) ^ 

m f ^ . 
J oos*® («) 

4 

fdx . 
/ 0O8*X CO 

^sinxdx 
/ 000*® 
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2. Hie Integral 

It would be a false analogy with, the example of the preceding 

paragraph to start with d(a* + **)“*, since the result would be but a 

single term, and that not yielding an integral of useful type. We 

need a product, and Exercises 6 and 7 in $ 1 suggest the plan; * 

(1) cl[a;(o’ + a?)”"] = (a’ + a^)~’*dx — 2ma? (a* + a^~^^dx. 

In the last term, write the factor x* in the form: 

X® = (a’ 4- x*)— o*. 
Thus 

(2) d[x(a* + x*)"’"] = (l —2m)(a^ + x*)""da! + 2ina®(a® + x»)~*"‘daj. 

It is now clear that, on setting m +1 = n and integrating, we 

shall have a reduction formula worth while, namely: 

dx ^_X_. 2n — 3 p dx 

(a* + x*)“ 2(n — l)a®(a® + x®)"“‘ (2n — 2)a^J (a* 4- x*)"~* 

It is this formula which occupies a pivotal position in the proof 

that every rational function can be integrated. 

f dx 

(a* 4 sc*)* 

EXERCISE 

In Formula (3) set » = a tand. Hence show how (3) can be de¬ 

duced from the formula of Exercise 2, § 1. 

3. Thelnt^rral / xfdx 

V o -h to 4 ex® 

l^et y = Va 4 6x 4- ex® 

and take d(x"y): 

(1) d,{x’^y) SB mx”~^ydx 4 dx, 

^ .mx"-«(a 4.to.tJ^).. 

V 

* There is no Inductive treatment possible In this part of Integration. Imagi¬ 
nation, reaouro^ulness, and the power of keen observation are the qualittea 
required. 
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Heaoe 
fJ!** ^ ^ 

(2) d(ary) = TOa-dx-\-{in + ^)b~dx-\-{m-\-l)c-—<te. 
y y y 

Let m-\-l = n, and integrate. Thus we obtain the reduction fox^ 

mnla: 

^se" dx _ af~‘y _ 2«-16 Coe^^da n — 1 o / 

/ y nc 2n cj ' y n cJ (3) 

By taking d{y/(x — p)*) and proceeding in a similar manner we 

obtain the reduction formulas 

(A-i r ^ ^ y_^n-Qf'(p) r dx 
J (* - #»)"y (« - 1)/(P) (®- P)-* 2n - 2 f(p) J (x-pr-^y 

n — 2 c r dx 

(®-p)*-^y’ 
f(p) =» o + 5p + cp* ^ 0. 

/* ^ _ • y_2a — 2 c r da; 

V - p)’‘y " (« - i)/'(p)(* - p)" 2n - 1/V) J (» - pT'V 
/O»)“0, /'W¥=o. 

Reduction formulas for the integrals 

(R) C ^ C J (**+!)» +5)*y’ J (aP + p® + 9)"y’ 

can be obtained by considering simultaneously 

d [y(®* +px + q) ■"] and d [®y (a?* +px + q) "*], 

p* —4g<0, 

EXERCISES 

1. Obtain a reduction formula for 

af'dx 

/; Va + to 

8. Give the details of obtaining the reduction formulas (4) and (S). 

8. Obtain a reduction formula for 

da h (x* Hh 6*)“ Vo* + 3? 

4. Obtain reduction formulas for the integrals (0). 
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Starting with where X=iO + 6ai + ca* and 

are undetermined constants, show how, by a suitable choice of 

reduction formulas may be obtained for the integrals 

Develop reduction formulas for 

‘sinxdx or ooszdx 
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DOUBLE INTEGRALS 

1. The Double lutegnL* The definite integral of a function of a 
single variable, t 

was defined as follows; Introduction to the Calcvlua, Chap. 12, § 3. 

The interval a ^ a; ^ 6 was divided up into « parts by the points 

an,= a, asi, •••, a;, = 6. The function/(*), which was required 

to be continuous throughout this interval, was formed for each of 

the points a;i, a;J, •••, xl, where x[ is an arbitrary point of the A?-th sub- 

interval, 

«*-i g S ®*> 
and the products, 

/(®0 ^k, Aa:* = X* - Xfc_i, 
were added: 

n _ 

2) /(xi) Ax* = /(xi) Axi + /(xj) Axj -f • •. +f{xl) Ax„. 
»«■! 

The limit approached by this sum as n increases without limit, the 

longest Ax* approaching 0, was defined as the definite integral of f(x) 

from a to b: 

* The student who is approaching this subject for the first time should study 
CMrfuUy §§ 1-6. He may then choose between §§ 0, 7, 8, lor an intensive 
study of any one of these three paragraphs will serve the present purpose. 

He should next study $$9, 10 with Mtention to every detail, and master 
thorou^y § 10. He can then take $| 11, 12, IS in any order. It is more im¬ 
portant that he do thoroughly one or two of these paragraphs than that he cover 
ail three superficiafiy. 

He will do well to leave the chapter at this point and turn to the next 
ebapter, that on Triple Integrals. The treatment here brings out strongly the 
geometric Bide of the subject, and is not encumbered by examples which present 
analytical difficulties. But the geometry involved in determining the limits of 
integration he muit mastpr. He can dien turn back to his double intends and, 
after a careful review of §§ S and 10, take the remainder of the chapter in any 
(wder. 

44 
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(1) f/(*)d*. 
b,i */ 

The foregoing eonception, or definition, can be extended to fono- 

tions of two variables as follows. Let /(z, y) be a continuons func¬ 

tion of the two independent variables *, y 

throughout a finite region iS’ of the (a;, y)-plane. 

Let S be divided in any manner into n sub¬ 

regions, of area ASi, ASt, •••, AS,, which to¬ 

gether just fill out the region S. Let (z^, 

be a point chosen arbitrarily within or on the 

boundary of the A:-th region. Form the siun Fio. 2 
n _ 

(2) ■” +/(*-» 

The limit approached by this sum as n increases without limit, the 

greatest diameter of any A6\ approachmg 0, is defined as the double 

integral of f(x, y), extended over the region S: 

(3) JJf{x,y)d8. 

The form of the sub-regions is wholly arbitrary. Thus they may 

be taken as rectangles (cf. Fig. 23, § 17) ; or as the four-sided figures 

of Fig. 24, § 18. In these cases, there will in general be irregular 

sub-regions along the boundary, consisting of pieces of the rectangles, 

etc. But it is easily seen (cf. § 2) that the contribution to the sum 

arising from all such regions is small, and approaches 0 as its limit 

Hence such regions may be wholly suppressed; or they may be 

replaced each by the complete rectangle, etc.; or some may be sup¬ 

pressed and others completed. The value of the limit of the sum 

will be the same in all cases. 

EXERCISE 

Extend the conception to space, starting out with a three-dimen¬ 

sional region, F, and a function,/(*, y, *), continuous throughout V. 

The result is the triple integral. 

/// f(x,y,x)dV. 

Give all the details of the definition. 



CALCtTOJS 

S. QaimwtriMi InterpretatioiL Xav of Qio Mean. If we plot 
surface 

Fio- 3 

W *=/(*.») 
and consider the cylinder standing on the 

region S, the volume, V, of so much of this 

cylinder as is cut off by the (x, y)-plane and 

the surface (4) represents precisely the 

double integral: 

(6) dS. 

For, each term f(x^, y^) AS^ in the sum (2) is the volume of the slender 

cylinder which stands on the fc-th sub-region and reaches up to a 

point of the surface (4) lying in this cylinder. Obviously, the sum 

of all these « volumes differs but slightly from the volume F; and 

the discrepancy grows smaller and smaller and approaches 0 as its 

limit, when n increases without limit.* 

Thus the analogue of the definite integral (1), interpreted as the 

orea under the curve y=f(x), is here the definite integral (3), inter¬ 

preted as the volume under the surface z=sf{x, y). 

We have tacitly assumed that f{x, y) is positive. If /(x, y) is 

negative, the column lies below the (x, y)-plane, and the double inte¬ 

gral is still numerically equal to the volume of 

the column, but is now seen to be negative. If, * 

finally, f(x, y) is positive in some parts of 8 and 

native in others, the double integral is seen _ 

to be equal to the algebraic sum of the volumes ^ 

of those parts of the column which lie above the 

(x, y)-plane, taken positively, and those parts which lie below this 

plane, taken negatively.f 

Laio of the Mean. It is clear that the volume, F, of the column is 

the same as that of a cylindrical column of like cross-section and of 

^titujde z intermediate between the smallest and the lai^est values 

of/(a^ y) in 8. The function / takes on this value in any one of an 

• A suggestive model of the whole set of slender columns is foimd in the 
ndnerslogical speoimens of etlbnite and tourmaUne. 

t We are tacitly lestrioting ouiselves to the oase-^suiRoiently general fm the 
ne^ of practice ^ that the number of parts in each class ia finite. Otherwise, 
a Uniting process would be neoessarr. 
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infinite nombet of suitably chosen points, (i, i/), in S, and thus 

(6) j*y/(*. if) ds =./({, ij) A, 

where A denotes the area of 8. This theorem is known as the Law 

of the Mean. 

3. Co]iiputati<ai of tb« Vdame V hy the Iterated Int^^raL We 

have learned how to compute all sorts of irregular volumes by the 

method of slicing and the application of the definite integral of a 

function of a single variable.* The method may be formulated 

generally for a solid of any shape. As¬ 

sume a line in space, whose direction is 

taken at pleasure, and cut the solid by a 

variable plane perpendicular to this line; 

cf. Fig. 6. Denote the distance of an ar¬ 

bitrary point on the line from a fixed 

point of the line by x. The area of the 

cross-section made by the above plane is 

a function of x, which we will denote by 

or simply^. Let the minimum x 

corresponding to one of the above planes 

be X = a, the maximum, x = b. Divide the interval from a to 6 into 

n equal parts by the points a^=o, Xu •••, = h pass planes 

through these points perpendicular to the line. Then the volume 

in question is given approximately by the sum: 

-H H- ••• +A{x^&x, 

and the limit of this sum, when n becomes infinite, is exactly the 

volume sought; 

(1) /• 
Adx. 

Example. To compute the volume of the ellipsoid: 

^ + JL‘ + - = 1. 
o* b® c» 

Here the cross-section made by an arbitrary plane x**' is the 

ellipse ^ — 1 — 

* The student will do weU to work again at this stage a number of the prob- 
leiDB on vblumeB in the Introduction to the OoJcalus, pp. 81b-828. 
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Its seklsxes lave the lengths c^l 

and henoe its area is, the accents being suppressed: 

' Kie volume V is, therefore, 

r * 

. F’= » T 6c^® — I ss^vohc. 

- • 

It is possible to check this formula by setting a = b = o. We 

then have a sphere of radius R=s a, and its volume is F= | jra*. 

s — The Volume, V, of § 2. To compute 

__ y this volume, we cut the column by an 

-A - ^ arbitrary plane, x = x', and determine 

, the area. A, of this cross-section. Nov 

j2_-y-- —i. A is simply the area imder the curve 

/ '"''s -^ z=f{x',y) (®’, constant) 

V ' between the ordinates corresponding 

8 to the abscissas and Fi. 

Henoe 

'h , y) dy- 

Dropping the accent, which has now served its 

purpose, we have: 
r, 

(2) A(x)= ff{x,y)dy, 

*-3r, *-r. 
Fio. 7 

whbre we must remember that x is constant, y 

being the variable of integration. The limits of integration, Fo 3^d 

Fi, are functions of x. If the equation of 

o|_^_a the lower boundary of be written in the 

/ g J then Ti =* d^(®). And similarly, if 

i4 be the equation of the upper boundaxy, 

no. 9 then » ^(»). 
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It mnaina only to integiate A with respect to x between the 

limits x = a and xmb, where a is the smallest abscissa that any 

point in 8 has, and 6 is the largest. We thus obtain: 

This last integral is commonly written in either of the forms: * 

(3) f(x,y)dy or f{x, y)dydx. 

It is called the iterated integral of /(*, y) (not the double integral; 

the latter has been explained in § 1), since it is the result of two or¬ 

dinary integrations performed in succession. 

Reversal of the Order of the Integrations. Instead of integrating 

first with regard to y and then with regard to x, we might have re¬ 

versed the order, integrating first with regard to a:. We should thus 

obtain the formula: s x, 

The student should reproduce Fig. 6, except for the intersection 

of the plane x = with the solid. He should then draw the in¬ 

tersection of the plane y = y', and formulate the area of the cross- 

section as an integral, constructing the figures which correspond to 

Figs. 7, 8. Finally, he should make clear to 

(1) applies in the present case, y here playing 

the r61e of the x of that formula. Thus equa¬ 

tion (4) results. 

It may happen that the boundary of S is 

out by some parallels to the axis of y in more 

than two points, as in Fig. 9. In that case, 

himself how Formula 

* Another form sometimes employed is to be avoided, namely; 

» r, 
/(X, y)dxdy. 

Ihe second form given in the text is to be thought of as an abbreviation for 
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let * ijT be eat Qp into a number ot regions, eadi of idiioh is of the 

oonsidered in the evaluation of V by means of the iterated in¬ 

tegral (3). Then the portion of F which stands on any one of these 

regions oan be evaluated by (3) and the results added. 

4. The Fundamental Theorem of the Integral Caloulue. 
nition of the double integral, § 1: 

The defi* 

is analytic, t.e. it is numerical, as opposed to geometrical. The in¬ 

finitesimals f{xt, y^) i^S,, are numberB, and the limit of their sum is 

a number. 

Likewise, the iterated integral, 

Ax,y)dif, 

is analytic; it is a number. 

Each of these numbers is equal to the number which is the meas 

ure of the volume, F, bomded by the surface of § 2: 

*-/(*, y)- 
Hence these numbers are equal to each other, and thus we ob¬ 

tain, by the aid of geometry, a theorem of analysis, whereby an 

important limit is evaluated.t It may be stated as follows. 

Euwdauentai, Thkobbm or the Intbgsal Cai.cblu8. Let 

f(x, y) be a continuous function of x and y throughout a region 8 of 

the (®, y^-yilane. Divide this region up into n pieces of area A/Sj, A5j, 

•••, Afif, and form the sum: 

/(®i> yO -|-/(a^, y,) + — +/(®», y„) 

where (»», y*) is any point of the Jc-th sub-region. If n now be allowed 

to increase unthotd limit, the maximum diameter of any sub-region 

apyproaching 0 as Hi limit, this sum taHl approach a limit, namely, the 

double integral /* /* 
j jAo!,y)ds-, 

* Here {»eoiaely, we reetrict ounelrea to regions 8 which have thie prc^ierty. 
t Compare the corresponding prooedtire in the Introduction to the Calctthu, 

Chap. 12, $ S, whereby two expressions for the area under a curve were equated 
to each t^tor. 
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AHd the value of the limtt ie given by the iterated integral, 

» Ti e r, 

J^j f{x,y)dy or /(», y)dx, 

• ^0 a 5 

where the limits of integration are determined as set forth in § 3. 
Esgtressed as a formula the theorem is as follows: 

SS 
B • ^ a 

The abbreviated notation 

// f(x, y)dxdy 

may mean either the double integral or the iterated integral. This 

notation should be used only when it is explicitly stated, or when 

it is clear from the context, which integral is meant. 

The rSle which the Fundamental Theorem plays in the applica¬ 

tions of the calculus is the following. The physical problems of 

determining masses, centres of gravity, moments of inertia, fluid 

pressures, attractions, etc., lead each time to & formulation which in¬ 

volves a double integral. The computation of the double integral 

can be performed by aid of the Fundamental Theorem. 

5. Volumes by Double lutegratioB. We have formulated the 

volume of a column standing on a plane region iS and capped by 

the surface z=f(x, y) by means of the double integral: 

And we have learned ho4 to compute this volume by means of the 

iterated integral: 

(2) F= 

The present paragraph is devoted to examples illustrating tire 

method. 

Let it be required to compute the volume out off from the paiabo- 

Idid: 
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% tiid (x, yyjiam. Siaoe the surface is obviously symmetrio vrifii 
respect bo& to the (»,») aud the (y, s)>p}ane, it is sui^dent to com- 

Eto. 10 

pute the part of the volume that lies in the 

first octant, and then multiply the result 

by 4. This volume, V, is expressed by the 

double integral (1), extended over the sur¬ 

face S cut out of the first quadrant in the 

(x, j/)-plane by the ellipse 

(4) Oal 
4 9 

To evaluate this double integral by means of the iterated integral 

(2), we cut the region S by the line x = x' and consider 2 as a func¬ 

tion of y alone along this line. Thus 

where is the largest value y can have along the segment in 

questioM. This value is the positive ordinate of the ellipse (4) cor¬ 

responding to a; = ic': 

Thus 
r 

= ^(4 _ *'*)!. 

4 27 J 
r 

Hence, dropping the accent, we have; 

The second integration, with respect to x, is from the smallest x 

of any point in 8, here 0, to the largest *, here 2. From the Tables, 

Jfo. 137, we have; 

3isd «o the total vdume is Sirs 9.4248. 
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EXERCISES 

1. Work the problem of the text by means of tbe other form of 

iterated integral, § 3, (4). 

S. If the region S is a right triangle with its vertices at (0, 0)^ 

(3, 0), (3, 2), and if the surface z = /(a;, y) is a plane whose intercepts 

on the axes are each 9, show that V =■ 19. 

3. A round hole of radius unity is bored through the solid of 

Fig. 10, the axis of the hole being the axis of r. Find the volume 

removed. 

4. Compute the volume of a cylindrical column standing on the 

area common to the two parabolas 

® y = ^ 

as base and cut off by the surface 

z = 12 + y — xK 

5. Work Example 3, integrating in the other order. 

6. The same for Example 4. 

6. Xau of a Lamina of Variable Density.* Consider a plane 

lamina** of variable density, p. We assume that p is a continuous 

function of (*, y): 

(1) P=fi<^,y)- 
To find the mass of the lamina, divide the latter into n pieces and 

denote the area of the A:-th piece by Then the mass of this 

piece will be given by the equation: 

(2) = 

where p* denotes the average density for the piece. Moreover, 

(3) p"t 

where pi and pi' denote respectively the least and the greatest 

values of p in the sub-region. The function/(*, y), being continu¬ 

ous, takes on any intermediate value, as p,„ in a suitably chosen 

point (ast, y^) of the sub-region.*** Hence 

* Ct. foot-note, § 1, p. 44. 
** The conception of a lamina and the relations (2) and (S) bdow are set 

forth In the Introduction to the Calculus, Chap. XU, § 10. 
••• In general, there will be a curve of such points (**, Pt). If, in particular, 

f is constant, then pi, pt, and p'J all coincide, and any point whatever of the 

snb-reglon may be taken as (zt, 
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W JJf = X y*) 

Nov let n increase withoat limit, the maximum diameter of any 

snb-region approaching 0 as its limit. Then, by definition, 

« S * y*) JJ/“(*> y) 
Hence ve have the mass of the lamina expressed, or formulated, as 

a doable integral: 

If, in particular, the density is constant, then 

where A denotes the area of the lamina. 

Example. To find the mass of a square lamina whose density is 

proportional to the square of the distance from one corner. 

Let the origin of coordinates be taken at that comer, and let the 

square lie in the first quadrant. Then 

and 
p = + f), 

M=^J'J'+y*) 

The double integral is evalxiated by means of the iterated 

integral: ^ , 

+ ^)dS = J’dy J*{3? + y*)dx = ^a*. 

Hence ilf=|oa* 

EXERCISES 

Find the mass of each of the following laminas: 

1. A li^t triai^le, whose density is proportional to the square of 

the distance from an acute angle. Ant. c ab(a* -f 3 6*). 

S. Xhe same, if the density is p^portional to the square of the 

distance from the right angle. Ant. c oh (o’ + 
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8. A semidrole, whose deosiiT^ is proportional to the distance from 
the bounding diameter. 

4. A right triangle, whose density is proportional to the distance 

from one leg. 

B. The same if the density is proportional to the distance from 

the hypotenuse. 

6. The segment of a parabola cut off by the latus rectum, if the 

density is proportional to the square of the distance from the focus. 

7. The same, if the density is proportional to the distance from 

the latus rectum. 

8. At what distance from the origin are the points of the square 

treated in the example of the text, at which the density is equal to 

the average density of the lamina ? Atu. ay/J. 

7. Centre of Gravity of a Lamina. To find the abscissa, x, of the 
centre of gravity, G, of a lamina, divide the latter as before into n 

pieces and concentrate the mass of each piece at its centre of gravity, 

whose coordinates we will denote by (x*, y*). Then, by § 6 and the 
Introduction to the Calculus, Chap. XII, § 6, 

j ^^ Pt -b -I-+ g. p. 

M 

If, in particular, the density is constant, M ™ pA, and 

- ^ Xi AiS, -b Xj ^^2 + ••• +3?, 

Let n increase without limit, the maximum diameter of any sub- 

region approaching zero as its limit. Then 

lim [xi A(Si 4- Xj -b — -b 

Since x and A do not change with n, we have: 

(1) 

In this case G is often spoken of as the centre of gravity of the 

plane area, 8. 
If p is variable, but continuous, we can still proceed as before; 

but 
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-+P«»»A5J 

is no longer by definition a double integral, since the points of the 

Ib-th aob-region, in which p takes on the value p^, are not seen to 

contain any one whose abscissa is equal to that of the centre of 

gravity of this sub-region, namely, x^. Nevertheless, this limit 

suggests the definite integral 

(3) lim[pi®j ANi-J-pjas*AiSj-f- ••• -f-p^x^AiSJ = xdSf 

where p* is the value of p in the centre of gravity (x^, y^) of the 

Ib-th sub-region. 

That the limits (2) and (3) are equal, follows from Duhamel’s 

Theorem, hUroduction to the Calculus, Chap. XII, § 8. For, on 

setting, 

** Pk^k^^ki Pk — Pk^k ^^k > 

we have & = and lim^ = l. 
«* Pk »" Pk 

Thus we obtain the general formula 

(4) 

Example. To find the centre of gravity of a triangle. 

Let the axes be chosen as in the figure, and let the equations of 

the sides through the origin be: 

where ^ — X| ®. 

Hence 

f- 

Jix^xdy » J'i 

xdy=axy = (Ai 

» r. 
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Since ^ SB wcthave finally. 

a 

and since A<=\lh, we see that 

x = \h. 

But 0 was any vertex, and hence we have the result that the 

centre of gravity of a triangle lies on a line which is twice as far 

from a vertex as from the opposite side. The centre of gravity 

must, therefore, be at the intersection of the medians. 

The advantage of the solution by double integrals is its directness. 

It was not necessary first to develop a special formula to fit this 

case, as was done in the Introduction, Chap. XII, § 10, Exs. 6, 7. 

EXERCISES 

Find the centre of gravity of each of the following laminas: 

1. The lamina of the example studied in the text of § 6. 

An$. 5=|a. 
2. The lamina of Exercise 1, § 6. 

3. A lamina in the form of a 45" right triangle, if the density at 

any point is proportional to the product of the distances from the 

two legs. 

4. The lamina of Exercise 6, § 6. 

5. The lamina of Exercise 7, § 6. 

6. Use the present method to obtain the earlier formula, 

t 

|or a region bounded by the axis of x, two ordinates, and the curve 

y > 0- 

7. Show that, for the plane area of Question 6, 
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8. Xoanati lod Jl^vdnots of iMrtio. B/ reaooaipg siotfJw ho 
ijiatr of § 7 tho following fomulAs are obtained. The moment of 
inertia of a lamina of variable denaitj about the origm is given by 
the equation: 

(1) l=>^Jp(a? + ^dS. 

The moment of inertia of such a lamina about the axis of y is 

given by the equation: 

with a similar formula for the moment of inertia about the axis of z. 

Products qf Inertia. Let mj, m*, m, be a system of particles, 

whose ooordinates are (asi, j/j), (as,, y,), —, (x,, y,), respectively. By 

the product of inertia of this system with respect to the coordinate 

axes is meant the sum: 

(3) ~ + ••• + 

The definition is extended to continuous distributions by the 

usual methods of the calculus. Thus for a launina 

<4) P = 

By the product of inertia of a plane area is meant the value of the 

above integral when p = 1. The product of inertia with respect to 

two parallels to the coordinate axes, which intersect in the point 

(a, b), is defined as 

(6) JJp(® - o)(y - V) dS. 

s 

If' pxydS. 

EXERCISES 

Determine the following moments of inertia by double integraticn^ 

• 1. A square about its centre. Am. ^ Ma^. 

3. A sqmure about a side. Ans. | Ma\ 

8. A right triangle about a vertex. 

A A right triangle about the right angle. 

8. A segment of a parabola out oS by the latus rectum, about 

tiwfoeos. 
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9. The same, about the latns rectum. 

7. A uniform lamina bounded by the parabola y*» 4 ox, the line 

x + yssSa, and the axis of x, about the axis of y. Work the 

problem both ways, integrating first with regard to x, then with 

regard to y; and then in the opposite order. Ans. I = 

8. Give the details of the proof by which formula (1) is 

established. 

Determine the following products of inertia. 

9. A square, two of whose sides lie along the positive coordinate 

axes. 

10. Each of the plane areas shown herewith. 

11. Show that, if either the axis of x or that of y 

is an axis of symmetry, the product of inertia with 

respect to the coordinate axes vanishes. 

9. Theorems of Pappus. Theosbu 1. If a dosed plane carve 

rotate about an external axis lying in its plane, the volume of the ring 

thus generated is the same as that of a cylinder whose base is the region 

S indosed by the curve and whose altitude is the distance through whidh 

the centre of gravity of S has traveled: 

(1) V=^2nh.A, 

where h denotes the distance of the centre of gravity of S from the axis, 

and A, the area of S. 

Let the axis of rotation be taken as the axis of y, and let the 

region S lie in the first quadrant. Divide S up into n elementary 

regions, and consider the volume, of the slender ring generated 

by the k-th of these regions. Think of this ring as made of gutta 

percha; cut it through along a meridian plane, and straighten it 

out. Obviously, the part of the gutta percha that was near the 

axis will be stretched, while the part remote from the axis will be 

compressed. Hence a cylinder of the same cross-section as the ring 

and of the same volume, ^F^, will have an altitude intermediate be¬ 

tween the shortest and the longest parallel of latitude of the ring, or 

2irxiAiSj < AFj < 2 irxi' 

where x|[, x" denote respectively the shortest and the longest distance 

of any point in A/S* from the axis of y. 

It is, therefore, possible to choose an intermediate between xl 

and a£, and such that „ „ 
^ AF* = 2wx*Ad’*. 
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Hmee 

n el 

y sal 2 thSh as lim 2 

or V=2tJJ xdS. 

On the other hand, by § 7, (1) 

J'J' 
and hence V=>2ThA, Q.s.a 

If the region S rotate only through an angle &, the volume V then 

generated is obviously 

(2) V= @hA. 

Thkobem II. If a plane carve, dosed or not closed, rotate abcntt an 

axis not cutting it and lying in its plane, the area of the surface thus 

generated is the same as that part of the cylindrical surface having the 

given curve as generatrix and Us elements perpendicular to the plane 

of the carve, which lies between two parallel planes which are perpen¬ 

dicular to these dements and whose distance apart is the distance 

traversed by the centre of gravity of the curve: 

S = 2vh • I or ®A • 1. 

The proof is similar to that of the first theorem. 

EXERCISES 

1. Find the volume of a torus, or anchor ring. 

2. Obtain the centre of gravity of a semi-circular lamina, assuming 

the formula for the voliime of a sphere. 

3. Obtain the centre of gravity of a semi-circular wire. 

4. Find the area of an anchor ring. 

6. Prove Theorem II. 

10. The Knitted Kitegral in Polar Coordinates. We have coim 

pnted the volume V under the surface z =‘f(p>, y) by iterated inte¬ 

gration, using Cartesian coordinates. Let us now compute tbe same 

volume, uaing polar coordinates. To do this, we divide the solid up 

i^to thin wedge«luq>ed slabs (the slab not extending in general dear 

to the edge of the wedge) by mrans of n equally spaced planepi 

through the axil of s: d » ^ -aa a, $i, •», d, «j9, and approximate 
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to Ar*,« foUoirs. Let be the area 
of the 8ecti<m the plane $ « tf irith the solid, and let this section 
rotate about the Oiia oi z thiough the angle h6. Then, by 

Theorem 1, the volume generated is A0 • h^A^, and the sum of such 
volumes, 

ini 

is a good approximation for V. In fact, 
when we visualize the totality of these 
pieces, we see that the volume of the solid 
thus obtained approaches V as its limit, 
when » = ao. Hence Fio. is 

The product hA which forms the integrand 
corresponds to the cross-section made by an 
arbitrary plane $ = Writing the equation 
of the surface in the form 

2 = F(r, 0) 

and recalling the general formula for the ab¬ 
scissa of the centre of gravity G of a, plane 

area, § 7, £x. 6, we see that here the coordinates in the meridian plane 
0 = 6' are r and z, corresponding respectively to Jhe x and y of the 
above formula. Moreover, h=sx, R' = a, and B" = b, where R' 

and R" are obtained by cutting the region S by the ray 0ss O' snd 
taking, on the line-segment intercepted by S, the smallest r for JB' 
and the largest r for R". Thus we obtain: 

hA^ J'rF(r,0')dr. 

Substituting this Ikst expression in (1) 
and dropping the accents, we get the final 
formula: 
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Bimti ti» Taloe of the doable integral is also equal to the 
B'anduaental Theorem { 4 nov tahes on the following form. 

THaOBSM: 

(2) J^jF{r,6)d3 = N' rF(r, 6) dr, 

whene the limits of integration, namely, R' and R" on the one hand, 
and a and on the other, are determined as set forth abore. 

It is particularly to be borne in mind that, before the first inte¬ 
gration is performed, the integrand of the double integral, F{r, d), 
must be multiplied by r to give the integrand, rJF'(r, S), of the 
iterated mtegral. 

Intone Order of hUegratim. If instead of using the planes 
BsaBa, 0t, A. we had divided the solid up by the cylinders 

r=Bro = a, Vj, •••, r^ — b, we should have 
been led to the result: 

^ A" 

(3) /A'"’ 9)d8^JdrJ rF(r, $)d0. 
B a e' 

Fio. 16 

Here, the first integration is performed on 
the supposition that r is held fast and that 0 
varies algebraically from the smallest vklue, 

which it has in S corresponding to the given value of r to the 
largest value, 9". 

Example 1. To^find the moment of inertia of a uniform dioular 
disc about a diameter. 

Let the equation of the bounding circle be 

ai* + y* SB o*, or r sb a, 

and let the diameter lie in the axis of y. Then 

r-p 

over mde. 
The integrand, «*, of the doable integral beoomes in polar coordi 

nates __ 
F(r, ff) tm r*oos*0. 

The integrand of the iterated integral is, therefore. 
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Thns -we hare 

1= 

The first integration gives 

pJ*WJ'r^ooa^Odr. 

Hence 

^cos’fl a=^COS*ft 
4 0 4 

1=^ J^<^s^0d6 = + sin $0039)1" irpcc*_Ma* 
4 - 4 * 

Exampk 2. The density of a square lamina is proportional to the 

distance from one corner. Find its mass. 

Here, p=scr. 

Clearly, it is sufficient to compute the mass of one of the right tri¬ 

angles into which the square can be divided. Thus 

dO sinfl 
J'cos* 0 2 cos* 6 

Hence, finally: 

+ ilogta(: + D|; = i+ilo8tan^- 

EXERCISES 

1. Compute the moment of inertia of a uniform circular disc 

about its centra \ Ma*. 

2. The density of a oiroolar disc is proportional to the distance 
from the oentre. Find the moment of inertia with respect to the 
centre, and determine the radius of gyration. 

Jns. fc-aVf. 
Compnto the moment of inertia of the square l&mina <rf 

Bzample 2 ahoat the point Oi and find its radius of gyration. 
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4u Wind the oentre of gravity of the square lamina of ExaapJe 2. 

5. Determine the moment of inertia about the origin of the part 
of the first quadrant which is cut off by two successive coils of the 

spiral r = e**, 

the inner boundary going through the point d = 0, r = 1. 

6. How far from the pole, r = 0, is the centre of gravity of a lobe 
of one of the roses, 

r = aco8 3d or r = aBin3<9? 

7. Find the moment of inertia of the lemniscate 

r* = a* cos 2 6 

about the point r = 0. 

■ 8. Determine the centre of gravity of one lobe of the lemniscate 
of Question 7. 

9. Give the details of the proof of Formula (3) in the text. 

10. Show that the area of any plane region S is given by the 
formula 

A = 

Hence, show that the area bounded by the curve 

6 = sinr 

and the portion of the ray d = 0 between the pole and the point 
r = IT is IT. Draw roughly the boundary of the region in question. 

11. Areas of Surfaces. We have determined the area under a 
plane curve and the area of a surface of revolution by means of 
simple integrals. The general problem of finding the area of any 
curved surface is solved by double integration. 

Let the equation of the surface be 

(V * =/(», y) 
and let the projection on the (», y)-plane of the part @ of this surface 
whose area is to be computed, be the region S. Divide S up into 
elementary areas and erect on the perimeter of each as directrix a 
cylindrical surface. By means of these cylinders the surface @ is 
divided into elementary pieces, of area AA;,, (k = 1, •••, m), and we 
next consider how we may approximate to these partial areas. 
Fhdd^tly thit may be done by constructing the tangent plane at a 
point yirSis) of the'fe-tii elementary area and computing the area 
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cut out of this plane by the cylinder in question. Nchr the orthc^o- 
nal cross-section of this cylinder is of area and hence the oblique 
section will have the area 

A/S* sec y*, 

where is the angle between the 

planes, or between their normals. The 

desired approximation is thus seen to 

be 

2^A/S* sec y*, 

and consequently A is equal to the limit of this sum, or * 

(2) ' A=fJ.^y dS, 

where y denotes the acute angle between the normal to the surface 

and the axis of z. 

There are three leading forms for representing the surface analyti¬ 

cally (cf. Chap. VI, § 1), namely, the explicit form (1), the implicit 

form 

(3) F{x,y,z)=0, 
and the parametric form 

(4) X =f(u, v), y = v), z = <p{u, v), 

where f, have continuous partial derivatives of the first order 

and at least one of the two-rowed determinants 

d<l> d<^ 

du dv 
, h = 

d\p dij/ 

du dv 
) h — 

If U 
du dv 

dij/ d\fi dx X dtf) d^ 

du dv du dv du dv 

— here, jt, — is different from 0. 

Corresponding to the form (1) formula (2) becomes 

S ! 

* It is a fundameutal principle of eiementary geometry to refer all geometri¬ 
cal truth back directly to the definitions and axioms. What are the axioms on 
which this formula depends ? The answer is: The formula itself is an axiom. 
The justification for this axiom is the same as for any other physical law, 
namely, that the idiysloal science, here geometry, built on it is in accord with 
experience. 
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Xiie second fom gives 

(6) A 

“ dz 

The paiametrio fom, (4), yields a formula, the complete establish¬ 

ment of which must be deferred till the transformation of double 

integrals has been taken up in Chap. XII, § 4. It is: 

(7) 
=// 

A du dv, 

where A = Vjf + jl + j» 

and 2 is the part of the (it, v)-plane which corresponds to the sur¬ 

face ®. 

Example. Two equal cylinders of revolution are tangent to each 

other externally along a diameter of a sphere, whose radius is double 

that of the cylinders. Find the area of the surface of the sphere 

interior to the cylinders. 

It is sufficient to compute the area in the first octant and multiply 

the result by 8. We have to extend the integral (2) over the region 

S indicated in Fig. 20. Here, 

-f- y* -I- *2 = o*, 
and by (6) 

r* = aj® -I- y*. a a 
sec Y = - = —■==, 

z - r* 

Since the integrand, sec y, depends in a 

simple way on r, it will probably be well to 

use polar coordinates in the iterated integral. 

t 
ardr 

m: I 
S aeof^ 

S » 0 
• AM# 

i* ardr 
< 

““ 0>r Or — “ 

0 

a«oi6 

r® 

o 

I a*(l — sin ff), 

9 
S 

a*J*(1 — sin ^ dd = a* — 1^, 

SB 4 jto* — 8 a*. 



DOUBLE INTBGRAIi! 07 

Objectioa may be raised to the foregoing solution on the ground 

that lie integrand, see y »a/ Vu* — r*, does not remain finite 

throughout S, but becomes infinite at the point 9 s=0, r = a. We 

may avoid this difficulty by computing first only so much of the area 

as lies over the angle a ^ 6 ^ ir/2, where the positive quantity a is 

chosen arbitrarily small. The value of this area is 

(i 
and its limit, when a approaches 0, is a* w — 1). 

— a — cos sin 6) d9 = a* 

EXERCISES 

1. A cylinder is constructed on a single loop of the curve 

r = a cos n6 

as generatrix, its elements being perpendicular to the plane of this 

curve. Determine the area of the portion of the sphere 

+ y* + ** = 2 02 

which the cylinder intercepts. .4ns. 
n 

2. Compute the area of the surface 

z = x + y^ 

which lies above the triangle of the {x, y)-plane whose sides lie along 

» = 0,* y = », y = o. 
the lines 

3. A column is bounded by the four vertical planes 

x=bO, ® = a, , y = 0, y=>a; 

the horizontal plane, 2 = 0; and the surface 

2t=l+2a! + 3y + ®*. 

Find the total area of its surface. 

4. Determine the area of the surface 

2 = ay 

included within the cylinder 

a* + y2 =i o* 
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ft. 4- t^lmdrleal surface is erected on Che ourre r=s$ as generatrix, 

the elements being perpendicular to the plane of l^is oarre. Find 

the area of the portion of the surface 

z = xy 

which is bounded by the (y, 2)-plane and so much of the cylindrical 

surface as corresponds to 0 ^ g ir/2. 

6. The horizontal cylinder 

*=/(*) 
is cut by a vertical cylinder whose base is the region S of the (x, y)- 

plane bounded by the lines x = a, x = b and the curves 

y = ^(x), y = </'(«), 

where 4>(x) and are two functions continuous in the interval 

a < a; ■< 6, and 
<f>(x) < a<x <b. 

Show that the area cut out of the cylinder is given by the formula 

(8) 4 = Fi r- Fo)\/l+(|J dx, 

« 

where F, = = f{^)- 

7. Two cylinders of revolution, of equal radii, intersect, their axes 

cutting each other at right angles. Show that the total area of the 

surface of the solid included within these cylinders is 16 a’. 

8. Obtain formula (8) directly, without the use of double in¬ 

tegrals. 

9. Show that the lateral area of that part of either of the cylin¬ 

ders of the Example of the text, which is contained in the sphere, 

is 4 a\ 

10. From formula (7) deduce the formula for the area of a surface 

of revolution: 

Write the equations of the surface in the parametric form; 

a; s= M, y=f(u) cos v, a = f(u) sin v. 
Thus i 

A ss^VI -f/'(«)* dudu = 2 JTVl +f{u)*du. 
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11. Express the equations of a torus parametricallj, and thus 

find its area. 

12. Fluid Fressnres. Let a vertical plane area be immersed in a 

liquid as described in the Introduction to the Calculus, Chap. XII, § 11. 

The pressure, P, of the liquid on the surface can be formulated as a 

double integral by means of the same physical considerations as 

those of the earlier deduction in terms of a simple integral. We find: 

(1) P= wJ'J* 
Specific Pressure. We have hitherto dealt only with the total 

pressure on a surface, and this is & force in the ordinary sense of the 

term — a push or a pull. In hydromechanics one meets the concep¬ 

tion of the pressure at a point, and by this is meant the following. 

Consider an arbitrary point, Q, in the fluid; pass a surface through 

Q, and draw a small closed curve 0 on the surface, which shall in¬ 

clude Q in its interior or on its boundary. Let P denote the pres¬ 

sure of the fluid on the part of the surface enclosed by C, and let A 

be the area of this small piece.* Then the ratio P/A represents the 

average pressure on the piece, and the limit, p, approached by the 

average pressure is what is meant by the pressure at the point, Q, or 

the specific pressure: p 
p =lim—• 

A 

The direction of P approaches as its limit the normal at Q. 

It is shown in hydromechanics that the limit p is the same for all 

surfaces through Q, no matter what their form and what their orien¬ 

tation may be. This fact is often stated briefly in the words: “ fluids 

press equally in all directions.” 

The total pressure on one side of a plane surface, S, immersed in 

a fluid and oriented in any way, is normal to the surface and is given 

by the formula: „ p, 

The proof is similar to that of equation (6), § 6, and is left to the 

student. 

• There are, of course, two sides of this small piece of surface, and two pres¬ 

sures (equal and opposite), one on each side. We fix our attention on one of 

these ^des, and on the pressure exerted by the fluid on it. A draftsman’s 

Uiumb-tack is a suggeedve model of the surface and the force. 
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Mecmpl0, The density of a certain liquid, acted on only by th« 

force of gravity, is proportional to the depth below the surface. 

Find the pressure at an arbitrary point. 

Let X denote the depth below the surface. Then 

p = cx. 

The weight of a vertical column of the liquid, ( units high and of 

cross-section of area A, is seen to be 

t 

AJ'pdx==icAp, 

forces being measured in gravitational units. 

If Q be an arbitrary point of the liquid, at depth x, and if the sur¬ 

face through Q be taken as a horizontal plane, then the average 

pressure on this surface will be 

A. A. 

Hence the pressure at Q {i.e. the specific pressure) will be: p =• J cas*. 

EXERCISES 

1. Give the proof of the theorem embodied in formula (1), draw¬ 

ing the requisite figure. 

2. By means of the above theorem show that the pressure P is 

equal to the weight of a cylindrical column of the liquid, whose 

cross-section is the area S, and whose altitude is the distance of the 

centre of gravity of -S below the surface of the liquid. 

8. From (1) deduce the formula for P given in the Introduction, 

Chap. XII, § 11, p. 316, (4). 

4. ‘The density of a certain liquid, acted on by gravity, is propor¬ 

tional to the distance below the surface. Prove that the pressure on 

a vertical rectangle, one side of which is in the surface, is equal to 

the weight of a vertical column of the liquid standing on an equal 

rectangle and extending to a depth of times the length of the 

vertical sides of the original rectangle. 

8. Find the centre of pressure in the preceding problem. 

8, Use the results of the present paragraph to obtain a simplex 

solution of Ex. 7, p. 316, of the Introduction. 
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13. Attractiimi. Let it be required to find the attraction of a 

material plane surface, or lamina, of variable density on a particle 

of unit mass situated in its plane, but external to the area. The 

problem will be solved if we can find the component of the resultant 

attraction along an arbitrary direction. For then we can-compute 

the components along two different directions, and by the law of the 

parallelogram of forces find the resultant attraction. 

Divide the area up into sub-regions and approximate to the com¬ 

ponent attraction of each of these. It will be convenient to choose 

our coordinates with the particle at the origin, and to compute the 

attraction along the axis of x. Since the choice of the direction of 

the axis of x is arbitrary, our solution is general. 

We may take it as physically evident that, when the area S is 

divided into a large number of small areas, and the mass, 

AM), = pi,AS^, contained in each is concentrated at one of its points, 

the attraction of this system of n particles is approximately equal to 

the attraction of the actual lamina, and that the approximation grows 

better and better as the number increases, the maximum diameter of 

the sub-regions approaching 0, so that the limit approached by tfie 

attraction of the particles is precisely the attraction of the lamina. 

Let (r*, 6k) be the polar coordinates of the fc-th particle. For con¬ 

venience we will choose this point so that the value of p in it will be 

equal to p*; in other words, we will choose it as a point of the locus 

p = Pj. We may now write simply p^ instead of p*, since we are con¬ 

cerned merely with the value of p in the point ‘(Xk, 6^). 

The component attraction of the fc-th particle along the axis of x 

will then be jrPiASk cos 6k- 

The limit of the sum of these components is the component attrac¬ 

tion, F, of the lamina along that direction, or 

(1) 

But this last limit is a double integral, and hence 

(2) 
cos 6dS 

iP- 

The variables r and 6 have been conveniently described as “ polar 

coordinates,” but this does not preclude the use of other systems of 
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eocttdimit^ ia evaluating the integral. Esaeatiallj, the variable r 
msaaa the distaraoe of a point P of jS' from the particle at O, and 0 
meaxia titie angle from the direction along virhich forces are resolved 

to the line OP. 

Example. Find the attraction of a uniform semicircular ring 

on a particle situated at its centre. 

Prom considerations of symmetry it is clear that the resultant 

attraction is along the radius perpendicular to the bounding ddame* 

ter. Hence j 

= Kp J'd$ J'^~ dr : Kplog^- 
a 

More Jt^ned Treatment. The foregoing physical hypotheses are 

cruder than is necessary and may be replaced by more refined ones 

as follows. Since the form of the regions is immaterial, we 

may take them like the meshes of a spider’s web, dividing the region 

up by circles whose common centre is at 0, and by rays, equally 

spaced, emanating from 0. The component, 

will then * satisfy the relation 

(3)iireiM*co8.* < AP* < /i'e‘4^C08«i, 

FlO. 21 

- n. 

where r[, $1 denote the least values of these 

coordinates in.A/Sj, and r*, 6'^, their greatest. 

We can now apply Duhamel’s Theorem, Introduction to the Cal- 

culms, Chap. XII, § 8, setting 

)8* = AP*, 
n 

where (r*, 6,^ is an arbitrary point of and is the value of p 

in this point. Thus formula (2) is established. 

It has tacitly been assumed that S lies to the right of the y-axis. 

If it lies to the left, AP* is negative, and relation (3) is false. How¬ 

ever, by making a suitable choice of the points (ri, tfi) and (»•», 0*), 

relation (3) can be reinstated, and the proof proceeds as before; cf. 

the Exercises under Duhamel’s Theorem. In case S is out by the 

aria of y, each part can be treated as above, the final result being, 

as before, Formula (2). < 

* The basis of this statement is our physical intuition. In other words, this 
statement is precisely the physical taw which we here postulate. We shall go 
Into tikis question in more detail presently. 
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The advantage of this treatment over the earlier one is that the 

present physical hypotheses are more plausible, — less drastic. 

They amount substantiady to two: First, if a plane distribution 

of matter (to the right of the y-axis) is replaced by one in which 

some of the matter of the given distribution has been shoved radi¬ 

ally (i.e. along rays from 0) further away from 0, the component 

of the attraction along the axis of x will thereby be diminished. 

Secondly, if the given distribution be replaced by one in which some 

of the matter has been shoved along arcs of circles with the com¬ 

mon centre 0, so as to recede from the axis of x, the component of 

the attraction along the axis of x will thereby be diminished. 

EXERCISES 

1. Determine the attraction of a uniform semicircular lamina on 

a particle situated in the axis of symmetry and on the circular 

boundary produced. 

2. Determine the attraction of a uniform rectangle on an exterior 

particle situated in a parallel to two of its sides, passing through its 

centre. + V(fe - a)» + 

2ab l_A-a 4. V(/t-f-a)^-p 

14. Bote on Density. Pressure at a Point. Specific Force. We 
have defined the density of a lamina at an arbitrary point, P, as 

where M denotes the mass and A, the area of an arbitrary piece of 

the lamina containing P, when this piece shrinks down toward P 

in any manner whatever, its most remote point approaching P as 

its limit. Thus p is seen to be a function of the coordinates (x, y) 

of P, and we have furthermore required that it be a contmuous func¬ 

tion. This latter hypothesis is, however, superfluous, since the con¬ 

tinuity of p follows from its definition by means of the above limit. 

For, suppose that, at a certain point Po, p were not continuous. 

Then it would be possible to find a set- of points. Pi, Pj, ••• with 

Pq as their limiting point such that the corresponding values pi, 

Pi, ••• of p do not converge toward p„ as their limit. In particular, 

^ese points could be so chosen that either 
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(i) Pt>Po + ^» ft = l, 2, 
ca 

(ii) pn<po — A, k=l,2,"; 

where h deDotes a suitably chosen positive constant. 

Suppose we have Case (i). It is possible to find a region A/, for 

which 

Mi 
A, 

comes as near to p* as one pleases and which, moreover, lies in an 

arbitrarily small neighborhood of P*. Moreover, by running a 

slender spur out from this region s j as to include the point Po in 

the extended region, the modified value Mh/A'^ of the ratio will be 

at worst but slightly diminished, since A'„ need exceed A,^ by only 

a slight percentage of A^, and Ml exceeds M^. If, then, we choose 

the first region so that 

Mi 
A 

>/>o + A, 

the second can also be taken so that 

^>Po + A- 

We have here, however, a contradiction. For, the modified regions 

pertain to the point Pqj hence, by hypothesis, lim Ml/A[ = p,. 

Thus the theorem we set out to establish is proved, namely, that 

the continuity of p is a consequence of the existence of the limit by 

means of which p was defined. • 

The theorem and proof hold for three-dimensional distributions of 

matter, and also for two-dimensional distributions on a curved sur¬ 

face. But it is not true for a one-dimensional distribution. The 

existence of the density of a material distribution on a wire does not 

ensure its continuity. 

Mean Density. We have assumed that, for any lamina, the equar 

tion holds: 

(1) M=pA, 

where p, the mean density, is a value of p intermediate between the 

largest value, p", and the smallest value, p', which the function p 

takes on in the region; 

#»"• 

That this is in fact the case can be shown as follows. Suppose this 
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were not eo, and euppose that p > p". Cut the region into two 

pieces. For these, 

Ml » pi A[, Mil = pn 

At least one of the 

For otherwise 

quantities pi and pa, must be as great as />. 

Ml < pAi, 

^11 < pAii‘, 

hence 

or 

Jfi + ^ p(-^i + All) 

M<pA. 

But M = pA, and here is a contradiction. 

Let Ai denote one of the regions Ai, An, for which the average 

density, pi, exceeds or at least equals p: 

Pi^ P hi Ai. 

Cut Aj into two pieces and repeat the reasoning. Then, for at least 

one of these pieces, At, we shall have 

W iPi 

and hence ^ ^ p. Proceeding in this manner we obtain an infinite 

sequence of regions, Ai, At, each lying in its predecessor, for 

each of which _ _ ' 
Pk^^ 

These regions can be so chosen that their maximum diameter ap¬ 

proaches 0 as its limit, and they thus determine a point, P, common 

to all of them. 

The density at P is m- 
p, = lim — 

and since M^JA^ = p* ^ follows that 

Pj. S p > p". 

But this is impossible, since p" is the largest value of p in tiie 

original region. 

Pressure at a Point. Body Fbrces. Similar theorems obtain re¬ 

lating to specific pressure. If a surface, S, form part of the bound¬ 

ary of a fluid, and if Q be a point of S, we have defined the pressure 

at Q, or the ap&Afic preaaure p, by the limit: 
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vkere ^ is a. portion of /S mcluding Q, and P is the pressure on 

cf. § 12. And "we have assumed that p is continuous. Reasoning 

siinilar to the above shows that p must be continuous. Also, it can be 

proved that the averi^e pressure p, in ease S is plane, cannot exceed • 

the maximum value p", or cut under the minimum value p', of p in S. 

In elasticity and hydromechanics one has to do with body forces, 

A three-dimensional distribution of matter is situated in a field of 

force. Let P be any point of the mass, and let r be a region in¬ 

cluding P in its interior or on its boundary. Let the resultant 

force exerted by the field on the matter in t be represented by the 

vector (F). Then (P)/F, where V denotes the volume of r, ap¬ 

proaches a limit, the vector 5, the specific force — this is our physical 
hypothesis — g _ lim^, 
when the most remote point of t approaches P. And now it follows 

as above that the vector field is continuous, i.e. that the vector if is 

continuous. Moreover, an appraisal of the average value of if as 

defined by the equation 

(P)==Fif 

is here possible, in terms of inequalities analogous to the foregoing. 

In the case of electric and magnetic fields of force the situation is 

altogether similar. 

15. Change of Order of Integration in an Iterated Integral. 

Hitherto the double integral has come first, and the iterated integral 

has played the r61e of an agent whereby the double integral is 

evaluated. We may, however, start out with an iterated integral, 

as 

(1) + y^) dy, 

and inquire what this integral becomes if the order of integration be 
reversed. 

The question is readily answered by converting the 

given integral into a double integral. Clearly, the double 

int^ral 

(2) Fia. 22 

where 8 is the region consisting of the triangle indicated in the 

figure, has the same value as the iterated integral (1). If, now, 
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the double integral be evaluated by means of tbe iterated integral 

taken in the other order of integration, we shall have the result we 

set out to obtain: 
a a Ad 

(3) N (a^ + y^) dy = J'dy J* + y®) dx. 

EXERCISES 

Express the following iterated integrals as double integrals, and 

draw a figure showing the region S over which each is to be ex¬ 

tended. Reverse the order of integration in each of the iterated 

integrals. 

a 0 

1. J'dxJ'f{x, y) dy. 

1 1 

3. J'dy J*f (x, y) dx. 

0 

Sr a 

6. * J'deJ'rF(r,e)dr. 

a M8 9 

7. I dd f rF{r, d) dr. 

Vaj — 
» 

/(*, y)dy. 

^ f 
4. J j .f (*> y) 

S w 

6. y*c?ry*rF(r, 6) dd. 

aVi i"' 

6. J'dr J' <t(r, d) dd. 

16. Surface Integrals. The extension of the conception of the 

double integral from a plane region to a curved surface © is 

immediate. Let a function / be given, defined at each point of @, 

and let it be continuous over @. Let <B be divided up into a large 

number of small regions,! aud let /* be the value of / at an 

arbitrary point of ASjj. Form the sum: 

* In Exs, 6-8 It is assumed Uist r, $ are interpreted as polar ooordinatea. 
Work these same problems, taking r, S, as Cartesian coordinates. 

♦ The notation A@*, AS* is here used both for the surface and for its area. 
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17. A Vvii Proof of tiie Foadamental Theoreoi. It is possible to 

deduce tbe Fundamental Theorem of § 4 without the aid of the 

geometric concept of the volume F. ,Thi8 method has a two-fold 

advantage: first, it throws a strong light on the determination of 

the limits of integration; secondly, it is the only method available 

when we Come to triple integrals. 

We shall give only an outline of the method in the present para¬ 

graph., our object being to set forth clearly the tftoug&t and tha 

technique. A proof will be given in Chap. XII, § 3. 

In the sum: 

(1) 

whose limit is the double integral 

Flo. 23 

we may choose as the sub-regions, or elementary areas, rectangles 

with sides A*, A»/, thus making A^* = Ax Ay, and then add all those 

terms together which correspond to rectangles lying in a column 

parallel to the axis of y. This partial sum can be represented as 

follows: 
7 

Ax]^/(x.,y,)Ay, 

where we have assigned new indices, i and j, to the coordinates of 

the point (x^, and where furthermore we have chosen the points 

(®t» y*) of this column so that they all have the same abscissa, x,. 
If, now, holding x, and Ax fast, we allow q to increase without 

limit. Ay approaching 0 as its limit, we have 

(3) Ax lim V /(x,, y,) Ay = 

Next, we add all the limits of these columns together: 
ft 

Oi 

^AxJ'f(x„y)dy, 

and allow p to increase without limit, Ax approaching 0 This gives 
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» >" 

f^J /(», y) dy, 
a It* 

i.e. the iterated integral of the Fundamental Theorem.* 

This method of deduction is not rigorous, for -we have not proven 

that we get the same result when we take the limit by columns and 

then take the limit of the sum of the columns, as when we allow all 

the A/Si’s to approach 0 simultaneously in the manner prescribed 

in the definition of the double integral. It is nevertheless useful 

as giving us additional insight into the structure of the iterated 

integral, for it enables us to think of the first integration as corre¬ 

sponding to a summation of the elements in (1) by columns, and of the 

second integration as corresponding to the summation of these 

columns. Moreover, when we come to polar coordinates in the next 

paragraph, it helps to explain and make evident the limits of inte¬ 

gration, and also the presence of the factor r in the integrand. 

limVAa) (f{x„y)dy 

h 

18. Continuatioa; Polar Coordinates. Let the region S be divided 

up into elementary areas by the circles r = r,, r,+i — = Ar, and 

the straight lines 9 — 9,, — 9, — A0. Then 

A5t = rt Ar A0 -f- ^ Ar2 A0, 

and hence, in taking the limit of the sum (1), A^S* may, by Du- 

hamel’s Theorem, be replaced by r^ArAS. Writing 

f{x, y)=F{r, 9) 
we have, therefore, 

e*)r*ArA5. 

In order to evaluate this latter limit, we 

may replace (r*, 9,) by (r,, ^,) and, holding 9, 

fast, add together those terms that correspond 

to elementary areas lying in the angle between. 

the rays 9 — 9, and 9 = 9,+i, thus getting • 

A9yF(r„9,)r,Ar. 

* The limits of integration, y' and y", are the functions denoted in § 3 hy 

To and Ti. The change in notation was due to the integral in (3), where y[ 
would have been awkwardly expressed as (To)<i and likewise for y'f A simi¬ 
tar change of notation is m^e below in § 18. 
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The limit of this sum, as p = ao, is 

Atf I F(r, B^tAt. 

Next, add all the limits thus obtained for the suooessive elementary 

angles together and take the limit of this sum. We thus get 

n 

lim^Adj F{r, 6j)rdr — J A6J*F{r, 6)rdr, 

i.e, the first iterated integral of § 10. 

If on the other hand we hold fast and add the terms that cor¬ 

respond to elementary areas lying in the circular ring bounded by 

the radii r = and r = r^+i, we get 

Adding all these latter limits together and taking the limit of 

this sum, we have: 
ff 

*< » »" 

lim ^ r,Ar J'F{r^, 6)d6 =» J*rdr J*F(r, G)A6, 

i,e. the second iterated integral of $ 10. 

The student may safely use the method of these paragraphs in 

practice, since the ideas involved are all correct as far as they go. 

A fallacy arises, however, when the ideas are set forth as if the 

double integral, written in the form 

I 
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vere the same IMag as the iterated integral 

h f" 

f ^ Jf{x,y)dy, 

“ since each is a sum of infinitesimala, and the order of the summa* 

tion is immaterial.” It is curious that some men who consider 

themselves practical and object strongly to anything theoretical in 

mathematics, find no difficulty in accepting as sound a theory which 

the race has long since outgrown. All the advantages of those 

earlier attempts to regard the infinitesimal as the ultimate basis of 

the calculus — like the atoms or electrons of modem physics — can 

be preserved by recognizing that we have here only the outline of a 

method; a very suggestive and altogether correct outline, but one 

which must be filled in by mathematical proof. Such a proof is 

given below in Chap. XII. 

EXERCISES ON CHAPTER III 

1. Find the volume cut out of the first octant by the cylinders 

z = 1 — X®, x = l—y\ Ans. -Jf• 

2. Compute the value of the integral: 

// 
extended over the interior of the circle 

8. Evaluate 

+ yS = 1. 

— 3 ay) dS, 

Am. 6.40. 

where /iS^ is a square with its vertices on the coordinate axes, the 

length of its diagonal being 2 o. Ans. ^a*. 

4. Express as an iterated integral in polar coordinates the double 

integral /. /> 

IP ^fdS, 

extemled over a right triangle having an acute angle in the pole. 

Gke both orders of integration. 
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5. Thfi eorre 
cob6 = 3 — 3r + r® 

rotates about the initial line. Find the volume of the solid gener- 

sted. Ans. ■j.J *■. 

6. Find the volume cut from a circular cylinder whose axis is 

parallel to the axis of z, by the (x, 2/)-plane and the sufface 

xy = az, 

if the cylinder does not cut the coordinate axes. Ana. 
a 

7. A cone of revolution has its vertex in the surface of a sphere, 

its axis coinciding with a diameter. Find the volume common to 

tie two surfaces. Ana. jira?(l — cos* a). 

8. Find the volume of a column capped by the surface 

z = 3y, 

the base of the column being the portion of the first quadrant in the 

(x, y)-plane which lies between two successive coils of the logarith¬ 

mic spiral, beginning with 6 = 0: 

* r = ae*. 
Ana. -jV a* (e*’" — +1). 

9. Find the abscissa of the centre of gravity of the above column. 

10. A square hole 2ft on a side is bored through a cylinder of 

radius a, the axis of the hole intersecting the axis of the cylinder at 

right angles. Find the volume of the chips cut out. 

Ana. 4 ft^V— 6^ -I- 4 o^ft sin-*-- 
a 

11. A square hole 2 ft on a side is bored through a sphere of radius 

a, the axis of the hole going through the centre of the sphere. 

Find the volume of the chips cut out. 

Ana. I ft® x/ffl® — 2 ft® 4- CS a®ft — 1 ft’) sin-*-——- — 4 sin-* ——— • 
^ ^ ^ ^ Vo®'^® a®-6® 

12. Find the area of that part of the surface 

z = tan-* ^ 
X 

which lies in the first octant below the plane z = rrf2 and within the 

(^linder a® -J- y® = 1. 

13. The density of a square lamina is proportional to the distance 

6omohe corner. l>etermine,the mass of the lamina. 
Ana. .765 Xo*. 
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14. Find the centre of gravity of the lamina in the preceding 

question. ^^ jV2-2+31or(1+V2) 

8[V2 + log(l+V2)] 

16. Obtain a formula for the centre of gravity of a curved surface 

of variable density. 

16. Find the moment of inertia about the origin of the portion of 

the first quadrant bounded by the curve 

(x + l)(y + 1)= 4, 

correct to three significant figures. 

17. Find the moment of inertia of an anchor ring about its axis. 

-Ans. M{ f a* + 6®). 

18. Two circles are tangent to each other internally. Determine 

the moment of inertia of the region between them, about the point 

of tangency. 

19. Find the attraction of a uniform circular disc on a particle 

situated in a line perpendicular to the plane of the disc at its centre. 

20. Solve the same problem for a rectangular disc. 

Ans. jK’ —tan-i- ■ . 
hy/h?^ + o* +6* 

21. Show that the force with which a homogeneous piece of the 

surface of a sphere lying wholly in one hemisphere and symmetrical 

with reference to the diameter perpendicular to the base of the 

hemisphere attracts a particle situated at the centre of the sphere is 

proportional to the projection of the piece on the base. 

22. Compute the attraction of a homogeneous hemisphere on a 

particle situated at the point of the spherical surface most remote 

from the solid. 

23. Show that the residual area of the sphere of Question 11 is 

16o* rsin-1 — .- — - tan-i —- ^- 
L V2(a*-6*) « Va2-2b*J 

24. Express as a double integral the iterated integral 

S 2a cos 9 

and state over what region the latter is extended. 
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25. !rhe saifie foi* 

S b«te# 

J'frdr\ 

*• Wiv 

26. Cliange the order of integration in the following integrals: 

/(*. y)dy, 

27. The intensity of light issuing from a point source is in¬ 

versely proportional to the square of the distance from the source. 

Formulate as an integral the total illumination of a plane region by 
an arc light exterior to the plane. 

- 28. Compute the illumination in the foregoing question on the 
interior of the curve. 

the light being situated in the perpendicular to the plane of the 

curve at r *= 0. Ans. 2 \(i-h cofi h). 

29. One loop of the curve 

r* a= o* cos 3 ^ 

is immersed in a liquid, the pole being at the surface and the initial 

line vertical and directed downward. Find the pressure on the 

surface, . icuVS 
-4ns-gJU. 

80. One loop of the lemniscate 

r* = a*cos2tf 

is immersed as the loop of the curve in the preceding question. 

Find the centre of pressure. 

Ana. Distance below the surface = ay/2{ — 4- iY 
V3ir^4>) 

81. Obtain a formula for the centre of pressure of an arbitrary 

fluid on a plane area. 

82. Prove that, if a specific pressure exists at every point of a 

area immersed in a fluid, this preBSUieiB a oontinuouB iunelion, 

as. Develop a formula for the kinetic energy of a material sur- 
o constant or variable density, which is rotating about an axis. 

abrot hin^o energy of the surface of a tmrus rotating 
anont its axis, the density being uniform. 



CHAPTER IV 

TRIPLE INTEGRALS 

1. Definition of the Triple Integral Let a function of three 

independent variables, f(x, y, z), be given, continuous throughout a 

region V of three-dimensional space. Let this region be divided in 

any manner into small pieces, of volume AF^, and let (aj^, jSj,) be an 

arbitrary point of the fc-th piece. Form the product/(x^, y^, 

and add all these products together: 

(1) **)AF*. 

When n is made to grow larger and larger without limit, the greatest 

diameter of any of the sub-regions, or elementary volumes, approach¬ 

ing 0 as its limit, the sum (1) approaches a limit, and this limit is 

defined as the triple or volume integral of the function/, extended 

throughout the region F: 

y*,**)AF* = 
n 

It is not essential that the totality of the elementary volumes 

should just fill out the region F. 'We might, for example, divide 

space up into small rectangular parallelepipeds, the lengths of whose 

edges are Ax, Ay, A», and consider such as are interior to V, or such 

as have at least one point of F in their interior or on their boundary. 

It is this particular division of space that gives rise to the notation : 

*, y, z)<ixdydz. 

But what is JoieaQt is tbs volume integral as defined above. 
The proof involved in the forgoing definition,—namely, the 

proof that ihe anm (1) actually approaches a limit,—hw to be 

given along diffoMUt lines for triple integrals, from what was 
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iKfflsible in the ease of doable integrals, 
represent the sum „ 

ibal 

There, we were able to 

by a Tanable volume which obviously approached a fixed volume 

as ite limit. Here, we should need a four-dimensional space in 

which to represent geometrically the sum (1). It is necessary, 

therefore, to fall back on an analytical proof. The proofs of this 

theorem and the Fundamental Theorem will be taken up in Chap¬ 

ter XII. The theorems themselves, however, are easily intelligible 

from their analogy with the corresponding theorems for double in¬ 

tegrals, and it is our purpose here to state them and to explain their 
uses. 

Dubamel^s Theorem bolds for triple uitegra,ls, as weJJ as for simple 

and doable integrals, and by means of it, when needed, the earlier 

formulas for mass, centre of gravit}', etc., are extended to three 
dimensional distributions. 

EXERCISES 

1. Show that the mass of a body, of variable (but continuous) 

density p, is given by the triple integral: 

M: ■Iff' pdV. 

2. Show that the abscissa, x, of the centre of gravity of the body 

is given by the formula: 

///' 
X SS-5-—— 

pxdV Iff xdV 

or 
M’ V ’ 

in case llie density is constant. 

3. Show that its moment of inertia about an arbitrary axis is 

■/// pr^dV, 

where r denotes the distance of a variable point of the body from 

the axis. 
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4.* The component F of the attraction of the body, on a particle 

of tmit mass situated at a point O outside the body, along an arbi¬ 

trary direction is given by the formula: 

r 

where r denotes the distance from 0 to a variable point P of the 
body, and ip is the angle which OP makes with the given direction. 

6. Show that the kinetic energy of a rigid body, rotating with 

angular velocity o) about a fixed axis, is 

where I denotes the moment of inertia about the axis. 

2. Evaluation of a Triple Integral by tfeana of an Iterated In¬ 
tegral. In order to compute- the value of the volume integral 

defined in § 1 we introduce an iterated integral. The method is 

that of Chap. Ill, l§ 17,18. Let the region F be divided up by 

planes parallel to the coordinate planes into rectangular paralle e- 

pipeds whose edges are of lengths A*, Ay, Az, and let us e as our 

elemeuta of volume these little solids. Then AF* = AxAyAz, and 

the sum (1) of § 1 becomes 

(3) 

We will select from this sum the 
terms that correspond to elements 

situated in a column parallel to 

the axis of z and add them to¬ 

gether, see Fig. 26: 
f 

AxAy'^fi.x,, y,,z,)Az, Fro. 26 

where we have assigned new indices, i, j, and I, to the , 

l. On !urf«ca oI .pb.rl»l of toWliif 

thing. 
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p(^tB y»> fj,) of tbi3 oolama so that they all lie m the lioe 
f==Sf/, If, now, still holding x^,yj, Aas, and % fast, ire 

allow « to increase without limit, M approaching 0, we have 

A* Ay lim V /(«„ a,) Aa. : Ax Ay f /(*<» y;, 2) da, 

where is the smallest ordinate of the points of V on the line 
® , y = y,., and Z, is the largest, — we assume for simplicity that 
the surface of V is met by a parallel to any one of the coordinate 
axes which traverses the interior of F in two points. 

The surface which boimds V consists of two parts, — a lowe’ 
nappe, represented by the equation z=s ^(x, y); and an upper 
nappe, given by z = 4>i (x, y). The functions Zo and Z, have the 
values respectively: 

Zt = <hi‘», y)> = i>i (*. y)- 

Next, we add all the limits of these columns together: 

where we have set 

/• 
f(x,y,z)dz = <b{x,y). 

and take the limit of this sum. The region 8 of the (x, y)-plane 
over which this summation is extended consists of the projections 
of all the points of V on that plane, and hence the limit of this sum 
is the double integral of 4> (x, y), extended over 8: 

(4) , Urn * (x., y,) Ax Ay = // <td8. 

3 

We are thus led to the final result: 

FuNDAMENTan Thbobesi OF THE InTEQEAL CAi.ciri.ns: Ths 
volume inteyFol (2) of %lia eqval to the iterated integral (4), or: 

(5) 

The doulfie integral may be evaluated by any of the various iter¬ 
ated integrals studied in Chapter IIL If, in particular, the iterated 
integral in Cartesian coordinates be selected, we have (of. Fig. 8}: 
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(6) 
» Ti SI *(*. y) dS szj'dx C#(», y)dy, 

S • Tg 

'vrhere it is assumed that the region S is cut by a parallel to the axis 

of y at most in two points. 

We thus get, as one of the final formulas for the volume integral 

in terms of simple integrals, the following; 

» r, *1 

(7) 

Another form in which this iterated integral is written is the 

following: 
* r, if, 

The abbreviated notation 

///■ 
bation 

SIS 

/(*, y, z)dzdydx. 

f(x, y, z)dxdydz 

may mean either the volume integral or the iterated integral. This 

notation should be used only when it is explicitly stated, or when it 

is clear from the context, which is meant. 

Example. Find the moment of inertia of a tetrahedron whose 

face angles at a vertex 0 are all right angles, about an edge ndjacent 

to O. 

Take 0 as the origin of coordinates and the three adjacent edges 

as the axes. Then 

J= '/// (a!’+y*)dF= pjdxjdyj (!e» + jfS)Js, 

where the limits of integration are as follows. First, the limit 

.Eo is =0, and the limit Zi a Z is the maximum ordinate in V cor¬ 

responding to an arbitrary pair of values x, 

y; {.e. the ordinate of a point in the oblique 

face of the tetrahedron: 

Hence 

be a h e 
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and the result of the first integiation is: 

♦{*» y)=ds =(®» + y*)2 j = c(aa + y*)^l -^ 

Next, the function 4> (x, y) must be integrated over the surface S 
consisting of a triangle bounded by the positive axes of x and y, 
and the line 

The double integral may be computed by iterated integration, the 
limits of integration for y being Yq = 0 and 

r,.r=5(i-5), 

and those for * being 0 and a. The remainder of the computation 
is, therefore, as follows; 

/vv {3?-\-y^)dz = 

abc 
’ 60 

(a*+ 6’-); 

10 

The student cam verify the answer by slicing the tetrahedron up 
1^ planes parallel to the (a:, y)-plane and employing the result of 
Ex. 4 at the end of S 8 in Chap. Ill, together with the theorem of 
§ 16, Chap. XH, in the Introduction, 
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EXERCISES 

1. Find the centre of gravity of the above tetrahedron. 

2. Determine the moment of inertia of a rectangular parallele¬ 

piped about an axis passing through its centre and parallel to four 

of its edges. 

3. A square column has for its upper base a plane inclined to 

the horizon at an angle of 46° and cutting off equal intercepts on 

two opposite edges. How far is the centre of gravity of the 

column from the axis ? Ana. \d?/h. 

4. The density of a cube is proportional to the square of the 

distance from the centre. Find its mass. 

3. Continuation; Spherical Coordinates.* Let P, with the Car¬ 

tesian coordinates x, y, z, be any point of space. Its spherical 

coordinates are defined as indicated in the figure. If we think of 

P as a point of a sphere with its centre at 0 and of radius r, then 

6 is the longitude and is the colatitude of P, 

We have 
a! = r sin </> cos 9, 

y = r sin sin 6, 

z = r cos <f>. Fio. 28 

We propose the problem of computing the volume integral 

by means of iterated integration in spherical coordinates. For this 

purpose we will divide the region V up into elementary volumes as 

follows. Construct (a) a set of spheres 

with 0 as their common center, r = r,, 

their radii increasing by Ar; (6) a set 

of half-planes 9 = 9^, the angle between 

two successive planes being A9; and 

lastly (c) a set of cones their 

semi-vertical angle increasing by A<^: 

— 4>i = The element of volume 

thus obtained is indicated in Fig. 29. Fio, 29 

* a. Analtftic Oeometry, Chap XXIV, §§ 1, 2. The student should {waotioe 
vkuaUzing the lo<d which are defined by setting one coordinate equal to a con¬ 
stant ; then those which arise when two coordinates are held fast- 
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IFhe l^gths of the tliree edges tliat meet at right angles at Pare Ar, 

r r sin ^ A0, and hence this volume AV differs from the volome 

of a rectangular parallelepiped with the edges just named, ox 

(9) r* sin ^ Ar A6 A^ 

by an infinitesimal of higher order: 

lim 
AV 

sin iftArABA^ 
1. 

It follows, then, from Duhamel’s Theorem that in the limit of the 

sum (8) we may replace AV^ by the infinitesimal (9). If we set 

we have 

/// 
fix, y, z)=F(r, $, rf,), 

n _ 

fdV = lim V P(rjfc, tf*, <l>k)rl sin Ar Atf A«^. 
saaMO 

Can we evaluate this last limit by iterated integration? It is 

easy to see that we can. For, the sum is of the type of the sum (3), 

and hence the method of § 2 is applicable. Following that method, 

let us select, for example, those terms for which 6 and <f> have a 

constant value, and add them together; 

A6 A>t> P(r<, ^,) rf sin Ar, 

where and are constant. They correspond to elementary 

volumes lying in a row bounded by the planes $ = and 6 = 6/+i, 

and by the cones and Now allow p to increase 

without limit, Ar approaching 0. This gives, as the limit of the 

above sum, 

A^ Aif> sin fjtf I r*P(r, Bf, 4>,) dr. 

where Bo is the distance of the nearest point of F to 0 on the line 

B = 6i, and R„ that of the farthest. We assume for sim> 

plici<7 that idle surface of V is met by any one of the lines: 

J d = const.. 1 ^ ss const., f r ss! const., 

1 ^ = const.. 1 r as const.. 1 d s= const. 

which traverses the interior of V, in two points. 

Next, we add all the limits thus obtained together: 

(10) 
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wliece we have set 

and take the limit of this sum. If we interpret 6 and as the coor 

dinates of a point on the surface of a sphere r = const, (say, r =1), 

then the points (6, range over a region S of this spherical surface, 

which consists of those points in which radii vectores drawn to 

points of V pierce the surface of the sphere. 

The region S is divided into four-sided pieces by the spherical 

curves 6 = 0^ The figure strongly suggests the elements 

which enter into the definition of the double in- . 

tegral. And, in fact, we can identify the limit C; 

of the sum (10) with a double integral by trans- 

forming the curved region S oa & plane region 'OSrfcSOoOx 

T as follows. Choose a plane and take a system 

of Cartesian coordinates (f, ij) in it. Set jOOv' 

Then a point {0, <\>) of 8 goes over into the point 

(^, rj) of the plane having the same coordinates, and thus the region S 

is carried over into a region of the plane. This region we denote by T. 

The limit in question now becomes: 

(11) lim2)'*r(i„,,)A^A,= If* ((,v)d£dr,, 

i.e. the double integral of the function ♦ ((, rj), extended over the 

region T. This double integral can be evaluated by means of an 

iterated integral, as set forth in Chap. III. In particular, we have 

0 H, 

«“> SJ *{(,r,)dT=J dij^ 

Bietuming to the variables 6 and 4>, we thus obtain, as the final 

formula, 

(13) lim2)*(tf„ ^,)AtfA<^= 

The limits of integration, *o and are obtained by giving 0 a 
fiyed value, 0"*0', and then determining the extreme values of ^ ia 
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S aloo^ the line 0 sb 0'. The smallest of these Telaes is the 

latest, 
Collecting the results hitherto obtained we are now able to express 

the volume integral by means of an iterated integral as follows: 

S *1 *1 

(14) J*J*J*f dV=J ^^ J'f sin <f> dr. > 

y a «e 

The volume integral and the iterated integral are also written in 

the forms: 
s *1 ^ 

/// f am<ltdrd4>dd and SSI f ain^drd^dB. j| 

We note that, in order to obtain from the integrand f of the vol¬ 

ume integral the integrand of the iterated integral, it is necessary 

to multiply / by r® sin <^, and this is always the first step to take. 

It is analogous to multiplying the integrand of a double integral by 

r, when the evaluation of such an integral by means of the iterated 

integral in polar coordinates is to be employed. 

The determination of the limits of integration can be formulated 

as follows. We have already seen how to find Bq and JB,. To find 

♦b and directly from V, without introducing the surface S, give to 

B a fixed value, &a $ = $', and consider all the points of V which lie 

in the half-plane 0 = 0'. The smallest ^ which any one of these 

points has will be the 4>o corresponding to this value of $; and the 

largest tft will be — Finally, to determine a and /8, observe that a 

is the algebraically smallest value which B takes on for any point 

in V, and p, the largest such value. 

Example. To find the centre of gravity, Q, of a homogeneous 

hemispherical shell whose radii are a and A. 

Let the origin of coordinates be taken at the centre of the spheres, 

and let the axis of x be the axis of symmetry. Since Q lies in this 

axis, the problem is merely to compute £. We have: 

2 

Here, /asx^rsin^cos^, 

and hence the integrand of the iterated integral becomes: 

/r® sin ^ a* V* sii^ ^ 008 A 
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Xh« itecatod integral itself is 
T 

I » ^ 

d<t> J*r* sin® cos dr = ^ ir (A* — a*). 

Hence 
^ _ 3(ffl® + g®^ + aA^ + A^) 

~ 8(a® + aA+ A’^) 

Checks: (t) When a approaches A as its limit, x approaches ^A, 

and this result agrees with the known position of the centre of 

gravity of a zone of a sphere, (it) When a = 0, S = | ,4, and we 

have a solid hemisphere. 

EXERCISES 

1. Work the foregoing example, using the plane of the base of 

the shell as the (*, y)-plane, the origin being at the centre and the 

positive axis of z piercing the shell. 

2. The same problem, thS plane of the base being in the (x, z)- 

plane, and the origin at the centre. 

8. From the shell just considered a solid is cut by a cone of revo¬ 

lution, co-axial with the shell and of semi-vertical angle a. Find 

its centre of gravity. Check your answer. 

4. Determine the attraction of a material homogeneous shell of 

the form described in the preceding problem, on a unit particle at 

the centre of the sphere. 

5. Compute the moment of inertia of a homogeneous sphere by 

triple integration.* 

6. Find the centre of gravity of the element of volume repre¬ 

sented in Fig. 29. 

7. Determine the attraction of a homogeneous solid cone of revo¬ 

lution on a particle situated at its vertex. 

8. Think out and work through the evaluation of a volume inte¬ 

gral by means of each of the six iterated integrals, of which one is 

the integral (14). Draw the figure in each case which leads to the 

double integral. Express in words the rule for determining the 

limits of integration. 

* The term -triple integration is used to apply both to the formviation of a 
idiysical quantity as a volume integral, and to its evaluation by means of an 
Uorated integral. A slnular remark applies to doable integration. 
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9. Develop tlie iterated integral by first holding a sii^le eoordi* 

nate&st (e.p. set r rj and then obtaining a doable integral. 

10. Write oat the twelve iterated integrals, — sra, as three-fold 

simple integrals, and six as a doable integral combined with a simple 

integral. 

11. Apply to Exercise 5 a sufficient number of each type of the 

iterated integrals considered in the preceding problem to make sore 

that you understand the rest. 

12. A tetrahedron has its faces in the coordinate planes i»s>0, 

y ss 0, and the planes 
2 = a: -f- y, z = a. 

Express as an iterated integral of the type (14) the volume integral 

(2), determining explicitly the limits of integration. 

13. The density of a cube is proportional to the distance from its 

centre. Find its mass. 

14. Compute the moment of inertia of the cube of the preceding 

problem about an axis through the centre parallel to four of the edges. 

4. Oonelnsion; Cylindrical Coordinates. The cylindrical coordi¬ 

nates of a point are defined as in the accompanying figure.* They 

are a combination of polar coordinates in the 

(as, y)-plane and the Cartesian s. 

x = r cos 6, y = r sin 2 = 2. 

The element of volume is shown in Fig. 32. The 

lengths of the edges adjacent to P, — they meet 

at right angles there, — are: Ar, rA9, Az. Hence"the volume, AF, 

of the element differs from rArAOAz by an infinitesimal of higher 

order, and we have: 

AF 

Fio. 31 

lim- 
rArAOAs 

= 1. 

From Duhamel’s Theorem it follows, then, 

that in taking the limit of the sum (1), § 1, 

AFt may be replaced by r^ArAdAx, and so, 

setting f(x,y,z)=F{T,6,z), 

we obtain: 

« 

FiO. 32 

fdVas ArAdA*. 

* AMalytie Oeometiry, p. 687. 
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THa last limit can be computed by iterated integration in a 

manner precisely similar to that set forth in the case of spherical 

coordinates. We thus obtain: 
» e> Mi 

(16) SU’-hS dsj'frdr, 

together with similar formulas yielded by adopting a different order 

of integration. 

The above volume integral and the iterated integral are also written 

in the forms: 

/// frdrdBdz and 

> Cl Jb 

SIS- f rdr^dz. 

« 00 

Example. To find the attraction of a cylindri¬ 

cal bar on a particle of unit mass situated in its 

axis. 

The attraction is given by the formula (§ 1, 

F 

jHere 

r® = r* 008 J/ = - = — ^ • 
t Vr* -H 

Hence 

A 

tr • 

(16) / zrdr 
(r» + *s)>/s Vr^ -h |« 

= 1 
Va* -f- a* 

»+i • »■*•< 

J j/ (r* + **)*''* ^ Va* -f 

= Z - Va* -i-(fc -H1)* -f Va» + h*; 

-4 = 2 Tp[Z-t-Va*-H A* - Va* 4-(A + Z) ]. 

In the foregoing solution it has been tacitly assumed that A is 

positive (m zero). If A is negative and, in particular = — Z, the 



slstoald dearly be zero. And yet^ the above fotttula 
y^ld# a positive result What is the trouble ? 

Oa scrutmizing the details of the work one fiuds that equation 

(16) holds only when z > 0. For, if z < 0, the value of Vr®+z*, 

when r = 0, is not z, but —z. To repeat: it is the positive square 

root that is meant by and not the n^ative one, and the positive 

square root of z* is here — z. Thus (16) must read, when z is 

negative: 

(17) 
zrdr 

(r® + z*)*/* ^ 
= _1--Jg- 

I, Va^ + z* 

It becomes imcessary, therefore, in evaluating the volume integral 

for the case that h<0, Z + A>0, to split the iterated integral into 

two parts; the first corresponds to the part of the bar above the 

plane z = 0, and this attraction, Ai, is given by the solution in the 

text, except that the limits of the integral with respect to z are now 

0 and I+ h: 

Ai — 2 vp -f- o — "y/ct^ -f- (1 -|- A)'* J. 

For the attraction, A^, of the part below the plane we have: 

Ai = 2 irp [A — a + + A® J. 

Hence the resultant attraction, A = Ai +’A^, is ; 

^ = 2,rp[l + 2A - Va* + (1 + A}2 + Vo2 + A^]. 

Check. If in this last formula we set A = — ^ I, then .4 = 0, and 

this result agrees with the physical fact. 

EXERCISES 

1. Determine the attraction of a straight pipe on a particle situ¬ 

ated in its axis. 

2. Find the force with which a cone of revolution attracts a par¬ 

ticle at its vertex. Ans. 2 vph(l — cos a). 

S. Show that the force with which a piece of a spherical shell 

cut out by a cone of revolution with its vertex at the centre O 

attracts a particle at 0 depends, for a given cone, only on the thick- 

nera of the shell. 

4. Prove this preceding theorem for any cone. 
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5. fobaaiAaL Tba potential of a system of n particles, of moMiM 

mj, mj, •", m„ is defined (Chap. V, § 17) as 

+ ... 
ri rt r„ 

where r,, rj, ■••, r, denote respectively the distances of the particles 

from a unit particle situated at a point i*. 

It is easy to see how this physical conception can be extended to a 

distribution of matter, continuous throughout a three-dimensional 

region F of space. Let V be divided into n sub-regions, and let the 

mass, AJfj, of the Ic-th of these be concentrated at one of its points. 

Then, when n is large and the longest diameter of any sub-region is 

small, the sum 
A.Vi ^ AMj ^ _ _ I A3f.^ 

n ri r„ 

i.e. the potential of the n particles, appeals to our physical intuition 

as representmg approximately what we should understand by the 

potential of the continuous distribution; and we should expect the 

approximation to increase m accuracy and approach as its limit the 

potential, u, in question. Thus 

M = lim V 
*=* S r* 

Since A3f* = p^AF*, where denotes the average density of the 

A-th piece, the above limit is equal to the volume integral: 

Similarly, if matter be distributed continuously over a curved sur¬ 

face, the potential at a point i* not on the surface is 

where <r denotes the density of the distribution; r, the distance from 

P to a variable point on the surface, and the integral is the surface 

integral extended over the surface. 

The foregoing definitions apply, with the obvious modifications in 

form, to continuous distributions of electricity. 

Meample. To find the potential at an interior point of a homo¬ 

geneous shell bounded by concentric spheres of radii a and A. 
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tiie ax«8 be 00 ohoeen that P lies tm the positiTe axis s, &e 

(oigin being at tiie centre, and let its distance £rom the centre of the 

shell be A. On introducing spherical coordinates, we have: 

r* = r* -J- A* — 2 Ar cos 4, 

where r denotes the denominator of the integrand in (1); i.e. the dis¬ 

tance from P to a variable point (r, 6, of the distribution. Hence 

and we are led to the result: TAe potential ie constant within the above 

spherical shell. 

Furthern^ore, since the force which a distribution of matter exerts 

in any direction is proportional to the directional derivative of the 

potential function, it follows that the force is nil at each interior 

point of the shell. 

Remark. The potential of a homogeneous sphere of radius R at 

its centre is » u- 

2R 

EXERCISES 

1. Show that the potential of the shell of the Example at any 

exterior point is the same as that of a particle of like mass, situated 

at &e centre of the shell. 

2. * Obtain the potential of a uniform spherical lamina at any 

interior point (i) by evaluating the appropriate surface integral, 

taken over the sphere; (it) by allowing a to approach .d in the result 

of the text, the mass of the shell being held fast. ^ns. M/R. 

S, The same problem for an exterior point. Ana. M/r. 

4. Show that a homogeneous sphere attracts a particle outside it 

as if all its mass were concentrated at its centre. Give the solutian 

first means of the results obtained in this paragraph. Secondly, 

compute the attraction directly, as an exercise in triple integration. 

* lAe results is Bxs. 2 and 8 an tmportaot In the case of a uniform dMxftu- 
(ton id alaotrfmty ever a a^merioal surface. 
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&. Show that a homogeneous sphere attracts a particle situated 

in its interior with a force proportional to the distance from the 

centre. 

Suggestion. Pass a concentric spherical surface through the par¬ 

ticle and consider the two distributions into which the sphere is 

thus divided. 

6. If the density of a sphere is continuous, and if it is constant 

over any concentric spherical surfcice; i.e. if it depends only on the 

distance from the centre, show that the potential at an exterior 

point is the same as if all the mass were concentrated at the centre. 

7. Refine the physical hypothesis in a way analogous to that fol¬ 

lowed in the case of moments of inertia, fluid pressures, attractions, 

etc., and thus, with the aid of Duhamel’s Theorem, deduce the 

formulas of the text, (1) and (2), for the potential. 

EXERCISES ON CHAPTER IV 

1. Determine the attraction of a bar, of rectangular cross-section, 

on an exterior particle situated in its axis. 

2. Write down the five equivalent forms of the integral 

JdyJdxJ'f{x. y, z)dz, 

obtained by changing the order of the integrations. 

3. Two spheres are tangent to each other internally, and also to 

the (x, y)-plane at the origin. Denoting the space included between 

the spheres by V, express the volume integral 

by means of iterated integrals in Cartesian coordinates. 

4. Express the iterated integral 

fdz 

as a volume integral, and state throughout what region of space the 

latter is to be extendeld. 
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fi. game for 

i 4 tlOMg 

/ ooafidfi / j dr. 

w Y *»*oo.* 

ft. The temperature vithiu a spherical shell is inyersely propor¬ 

tional to the distance from the centre, and has the Talue 7« on the 

inner surface. Given that the quantity of heat required to raise 

any piece of the shell from one uniform temperature to another is 

proportional jointly to the volume of the piece and the rise in tem¬ 

perature, and that C units of heat are required to raise the temper¬ 

ature of a cubic unit of the shell by one degree, find how much heat 

the shell will give out in cooling to the temperature 0*. 

Am. 2 vC ToO (6* — o*) 

7. The interior of an iron pipe is kept at 100“ C. and the exterior 

at 15“. The length of the inner radius of the pipe is 2 cm., that of 

the outer radius, 3 cm. The temperature at any interior point is 

given by the formula: 
Tsr «logr-f/8, 

where r is the distance from the axis and the constants a, /9 are to 

be determined from the above data. Taking the specific heat of 

iron as .11, and its specific gravity as 7.8, how much heat will a 

segment of the pipe 30 cm. long give out in cooling to 0“ ? 

Ana. 21,000 calories. 

ft. Show that the attraction of a homogeneous spherical segment 

of one base, on a particle situated at its vertex, is 

where a denotes the radius of the sphere and h, the altitude of the 

s^ment. 

9. Show that the segment of the preceding question attracts g 

^tftide situated at the centre of the base with a force 

^li^[3a»-3aA +-A*-(2 o-&)***]. 

10. “ Show that the attraction of a homogeneous segment of one 
base of a paraboloid of revolution, on a particle situated at &e 
focus, is 
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. 4irpolog--^^, 
ea 

where a denotes the distance from the vertex to the focus, and b is 

the altitude of the segment.” 

Prove that this proposition is true when b ^ a, and correct it 

when b <, a. 

11. Find the attraction of the solid of the preceding problem on 

a particle situated at the vertex. 

12. Show that, in the case of a homogeneous oblique cone whose 

base is any plane figure, the attraction at the vertex due to any frus¬ 

tum is proportional to the thickness of the frustum. 

13. A homogeneous hemisphere attracts a particle situated in the 

rim of its base. Show that the component perpendicular to the 

base is f IT pa. 

14. The Great Pyramid is 481 ft. high, and the base is 766 ft. on 

a side. If it were homogeneous and of density equal to the average 

density of the earth, — namely, 6.6 times that of water, — find the 

force with which it would attract a mass of one ton situated at its 

vertex. (For the value of the gravitational constant, cf. the Intro- 

dwtion to the Calculus, p. 334.) 



CHAPTER V 

PARTIAL DIFFERERTIATION 

1. Fimetiolu of Sevoral Variablof. Limit! aad CkmtinnitF.* Coa- 

sidei a region, S, of the (x, j/)-plane. To each point (x, y) of S let 

there be assigned a ddinite number, u, according to any specific 

role. Then u is called a function of the independent variables (x, y) 

in the region S, and is denoted, for example, by the notation 

(1) u =/(x, y). 

Similarly, we may consider a region V of three-dimensional space 

and assign a number, u, to each of its points. Then w is a function 

of the three independent variables which are the coordinates of a 

point in the region F: 

(2) u =/(x, y, z). 

When the number of independent variables exceeds three, oar 

geometric intuition fails to provide us with a picture of a region in 

four-, five-, or n-dimensional space. It is convenient to speak of such 

regions by analogy with space of two or three dimensions; but the 

foundation for the definition of such a region must be sought in an 

analytic formulation. Thus we might consider those points t (*, y, *, <) 

of four-dimensional space whose coordinates satisfy the relation 

** 4- y* + 22 + <s < 1, 

aad call this region, by way of analogy, a four-dimensional hyper- 

sphere. 

* For the beginner, this flnrt paragraph should be regarded as primarily 
descriptive. He should read it thoughtfully for the ideas it suggests; but it 
should not be made a task, like certain courses in History, which is tested 
by a premature examination. Its object, at this stage, is cultural, —to give the 
student background, to acquaint him with the great ideas that underlie this 
domain of analysis, and also to supply him with such information as be needs 
in the immediate future. As be proceeds with the later paragraphs, he will do 
weU frequeutly to recur to these pages, for they will mean more to him as his 
knowledge inoressee and his imagination develops. For a thorough uaderatand- 
tog d! the subject of this chapter, thie paragraph is of the highest importance. 

t Meaning thereby nothing more or less than the quadruple of values (x, y, x, f), 
<e. ^ mark itself. 

ina 
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Fortunately that which is novel in functions of several vanables 

can, for the most part, be set forth by examining functions of two 

and three independent variables. In the first case the function, (1), 

ban be represented geometrically by a surface.* The function is 

said to be continuous at a point (0%, yg) of S when the surface is con¬ 

tinuous at the corresponding point. Let us seek an arithmetic defi¬ 

nition of continuity which can be applied to functions of any 

number of variables. 

Limits. Let f{z, y) be defined at all points of the neighborhood 

of a point (a, 6) with the exception of this one point itself.f Then 

/(», y) is said to approach a limit, A: 

lim f{x,y) = A, 

provided f{x, y) satisfies the following condition. Let t be a posi¬ 

tive number, chosen at pleasure, but then held fast. Then it shall 

be possible to find a second positive number S, having the property 

that the relation 

\f{x, y)-A\<t 

shall hold for every point, except (a, 6), whose coordinates satisfy 

the relations | 
la — a|<S, |y—6|<8. 

Continuity. A function /(», y) is skid to be continuous at a point 

(aid, yo) if it is defined at every point in the neighborhood of (ao, yg) 

lim /(*, y)=/(®0, yo)- 
<*. Va) 

• There is, really, a subtle question here involved, namely, that of whether 

the function is the dependent variable, u, which is represented by the ordinate, 
or whether it is not rather the locus of the triples (u, x, if) which is represented 

by the surface. As a matter of fact, the word function is used in both senses; 

hut it is the former sense in which it most frequently appears in what follows. 

t The function may be defined at the point (a, b), too. But, if it is, this fact 

is wholly irrelevant in the definition we are engaged in setting forth. 

t Geometrically the definition can be illustrated as follows. Represent the 

function by a surface as described above, u =/(9t, y). Draw the horizontsil 

pUmes 

(f) u = A + «, u = A-t 
and erect the vertical planes 

(«) x = a + 8, s = a-«, y=6+«, y = b-S. 
These air planes enclose a parallelepiped. And now, to say that /(*, y) ap¬ 

proaches A as its limit is merely to say that those points (u, x, y) of the locus 
tt *:/(*, V) for which (x, y) lies in the square (ii) of the {*, y>-plane—-the 
centre (a, 6) being omitted—are all contained within this paraUtiepiped. 
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mse lies cm tilie bcnmdaiy of the region, only suoh pointa 
(aV f) (Some into ooosideraticHi as lie in the region. 

These definitions extend to funcstions of anj number of variables. 

I^^nUeatmais. Let 

be a fonetion which is defined throughout the neighborhood of the 
origin, (a, p) = (0, 0), with the possible exception of this one pcnnt 
itself; and let 

lim f = 0. 
(«, 0) 

Then { is called an infinitesimal. The independent variables (a, fi) 

are called the principal infinitesimals. 

The concept of order, — same order, first order, second order, etc,, 
— does not admit of immediate or useful extension to the infinitesi¬ 
mals udder consideration, except in the following case. We define 
{to be an infinitesimal of higher order provided 

lim -i-= 0. 
(••S)*'"-® Vi* 4^/3* 

We might equally well lay down the definition in the form * 

lim ^ = 0 

Thus i = a* -f -I- /3* 

is an infinitesimal of higher order, (qt, p) being the principal infini¬ 
tesimals 

2. Law of the Kean for Functions of a Single Variable. Let/((s) 
be a function which is continuous throughout the interval a ^ a; ^ b, 
and let it have a derivative, df /dx = f\x), at every interior point of 
tile interval. Draw the graph, and let LM be the secant connecting 
its ^tremities. Then there will be at least one point of the graph 
at which the tangent to the graph is parallel to the secant LM. 

The truth of this statement is evident intuitively. For, consider 
tlm distance, PQ, from a point P of the curve to the secant, 
measured along an ordinate. This distance (taken algebiaioally) will 
have either a maximum or a minimum value, and at surii a point tim 

V Tbs laUwr foim has the advantage that It can be aztendad to complex 
quanmiea, edtercaathe loimer fotm then bresJu down. 
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tangent is eyidently parallel to the secant. Notr the slope of tiie 

u 
I-/fa) 

secant is 

tan Z NLM 
b — a 

and the slope of the curve at x = X is 
f'{X). Hence 

(Z) m -f(a) = (6 - a)f{X), a<X<h. 

If we set b — a=sk, then b = a-{- h, and we jnay write X in the 

X=a+^A, 

where d is some number lying between 0 and 1.* Equation (A) can 
now be written in the equivalent form: 

(B) fia + h)=f(a) + hfia + eh), O<0<1. 

The theorem contained in either of the equations, (A) or (B), is 
known as the Law of the Mean in the Differential Calculus.f In 
the form (B) it is identical with Taylor’s Theorem with the Remain¬ 
der for the simplest case. 

In {A), a and b can be interchanged, and in (B), h can be negative. 
An analytical proof of the Law of the Mean can be given as fol¬ 

lows. Form the function 

^(*) (* _ a) - [/(®) -/(«)]. 
0 — a 

This function satisfies all the conditions of Rolle’s Theorem, Intro- 

dvcUon, p. 430, and hence its derivative, 

c> — a 

mnst vaaish for a value x = X between a and b i 

/W-/(«)._/>(X)=0, a<X<b. 
b — a 

Thus the theorem is proven. 

* We may think of the second term, th, as representing that portion at the 
interval b^a-ash which must be added to the segment a to take us to X 

t The Iaw of the Mean in the Integral Calculus was obtained in the Intrn- 
duiOion to ‘the CktimUm, p. SiS. 
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iii0r«ly pato into analytic fom tiis geometrio proof 
Srst givffli, for t^e function ^(x) here employed is precisely the 
diatanoe PQ.* 

EXERCISES 
1. Show that 

:54ir<Iog(l + A)<A, 0<A. 
1 + h 

ft. Show that 

A<log-i-<-^, 0<A<1. 

3. Show that 

IH-■ <Vl+x<l+lXf —l<x, ®^fcO. 
2\/l + X 

3. The< Fundamental Lemma. We hare already defined partial 
derivatives.f Let u be a function of several independent variables, 
as *, y, z; 

« =/(*, y, 2), 
and let all the variables but x be held fast. Then u becomes a func¬ 
tion of X alone, and its derivative is denoted by J 

— or /i(x, y, z) or /.(*, y, z). 

Similarly, when y alone is allowed to vary, we have 

^ or fi{x, y, z) or /,(x, y, *), etc. 
oy 

There are as many partial derivatives of the first order as there 
are independent variables. 

Furthermore, we write 

y) or /„(<r,y), etc. 

* The nndetlying importance of the an^ytlc proof is doe to the tact that this 
proof rests on the most elementary considerations of analysis, as distinguished 
from geometry, — namely, on the theorems about continuity and the definition 

a.deiiyaUve. A detailed study of these, however, belongs to a later stage. 
t Jfofrodttefion to the Calculua, Chap. XV, § 2. 
tit is sot possible to consider the expression 8u/8(e os the ratio of two 

Infinitesimals; d. The notodon most be taJcen os a whole, whkli expresses 
the psTtital dmivodw. 
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The theory of partial differentiation is based on a lemma which 
we proceed to deduce. For convenience let the number of inde¬ 
pendent variables be two: 

(1) tt y), 

and let this function, together with its partial derivatives of the first 
order, be continuous throughout a region, S. 

Consider an arbitrary point, (2^, y^, and a second point, 

(*o -t- A*, yo + Ay). 

Denote the corresponding increment in the function by Aw: 

(2) Au =/(2o -f Aas, yo-h £^y)-f{x^, y^). 

This last expression we now transform by adding and subtracting 
the same quantity, /(ao, yo -I- Ay) : 

(3) Au = f(x^ -f Ax, yo -i- Ay) - /(*„, yo + Ay) 

+/(!Bo. yo + Ay) -/(*o, yo). 

To the first of these differences we apply the Law of the Mean, 
§ 2, thinking of /(x, y^ -f Ay) as a function of x alone, and letting * 
range through the interval Xg ^ x ^ Xg + Ax. The derivative of 
this function is /i(x, yo -1- Ay). Thus the Law of the Mean yields 
the result: 

/(Xg+Ax, yo-h Ay) -/(a?o, yo+Ay) = Ax/i(xg+eAx, yg+Ay), 0 < < 1. 

To transform the second line in the expression for Au, consider 
the function of y alone, /(x„, y), in the interval yo ^ y ^ Vo + ^y- 
The derivative of this function is^(a!o, y), and thus the Law of the 
Mean gives: 

/(®o, yo + Ay)-/(a!o, yo)= ^l/M^g, y# + O'Ay), 0 < d' < 1. 

Hence we have the relation: 

(4) Au = /,(aso 4- ^ A®, yg -f- Ay) A® + /,(®o, yo -f 0' Ay) Ay. 

It is assumed that all points of the rectangle whose vertices lie in 
the four points (®b ± A®, yg ± Ay) lie in the region S. 

By hypothesis, the partial derivatives, 

are continuous functions. If, then, we set 

fi(asg+dAx, yo+Ay)=s/i(it\), y»)+«, yfl+S'Ay)=a/j(a%, yg) -hy* 
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botlt e and 17 tnli be infiniteBimala: 

lim e SB 0, lim naaO. 

On substitatmg these values in (4), we have: 

(5) Alt =/i(ai6, Vo) Ax +ft(^'o, yo)Ay + €Ax +17Ay, 

or, on dropping the subscripts, 

(I) Am = Aa; + —Ay + tAx + yAy, 
cx oy 

where (as, y) is an arbitrary point; Ax and Ay are any two inore< 
ments, subject merely to the condition that the rectangle with 
vertices {x ± Ax, y ± Ay) lie in 8; and c, rj are infinitesimals 
whenever Ax and Ay are infinitesimals. 

If u is a function of three variables, x, y, z, the equation takes the 
form 

(!') Au= |^^Aa:+|^^Ay+|^A? + tAx + j;Ay+{A«, 
ax cy az 

(There t, y, H are infinitesimal when Ax, Ay, Az are infinitesimal; 
and similarly for any number of variables. 

4. Change of Variables. If « comes to us as a function of the 
variables (x, y), 

(1) «=/(*7y)» 
and we make x and y depend on new variables, (r, «) : 

(2) x=^(r,«), y = ^(r,8), 

then u becomes a function of (r, »). The derivative of u with re¬ 
spect to r is expressed by mean^ of the following formula: 

(A) du ^ dudx ■ du By 

dr dx dr By dr 

To prove this statement, choose an arbitrary point (r^ Sg), give r 

an increment Ar, and denote the corresponding increments in u, 
Xf and y respeetively ly A,w, A^x, and A,y. Then, by the lemma 
of J 8, 

A,u = ^A;x + ^A,y + e A^ -f- yA,y. 

dividing through by Ar and allowing Ar to approa jh 0 as its 
limit, we have: ^ 

lim^-lim|!i^-i-lim|i^. 
Ar AfM dx Ar irmdy Ar < 
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Here, ^u/dx and dufdy are eonstants, being the values of these 

demativeB at the point which corresponds to (ro, Henoe 

they may be taken outside the limit sign. Moreover, 

lim^ = ^, lim4«J/=£v. 
ArM Ar OT ArM) Ar or ar*e Ar dr 

Thus the truth of (A) is established. 

It is assumed that ^ and ij/ are continuous, together with their 

partial derivatives of the first order, throughout a region S of the 

(r, s)-plane; that, moreover, / is continuous, together with its partial 

derivatives of the first order, throughout a region S of tile (as, y)- 

plane; and that, finally, the points {x, y) which correspond by (2) 

to points (r, s) of S He in S. 

The number of variables in the two classes, — (x, y) on the one 

hand, and (r, s) on the other, — need not be the same; the number 

in each class is arbitrary. Thus the variables of the first class 

might be x, y, z, and those of the second class, the single variable, t. 

The derivative of m with respect to t would then be a total deriva¬ 

tive, and we should have: 

dt dx dt dy dt dz dt 

Again, there may be but a single variable, x, in the first class, and 

several, (r, «,•••) in the second clase. Here, 

(4) 
du _ du dx du dn ^ 

dr dx dr ds dx ds’ 

If there is but one variable in each class, the case reduces to that 

of the Introduction, Chap. II, § 8, p. 35; and on the other hand the 

present theorem is a generalization of that one. 

The result can be formulated as follows. 

Thbobsh. If u be a function of the variables x, y, z, ••• ; 

w */(®. y, —)> 
continuous, together with its partial derivatives of the first order, through¬ 

out a region S of the (x, y, z, •••)-apace; and if each of the arguments 

X, y, z, — be set equal to a function of the variables r, «••• ; 

35= <,(r, 8,—). » = <;'(»■»«>“■)» z = i«(r, 8,—),—, 

tohere u, ••• are continuous, together with their partial derivatives of 

the first order, throughout a region H of the (r, s, —)-«pao8, and »eft«re, 
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moreover, wuh point (r, a, •••) of S teatfo to a pomt («, y, z, •••) of S; 

(^) 
du _du Sx . Bu dy dudz . 
dr dx dr dy dr dz dr ’ 

teith similar equationafor du/da, •••. 

Example 1. Iiet u = e**, 

» = log Vr* + «*, 

Then 

and henoe 

du 
dx ^ ’ 

dr r® + a* 

&u _ ex 

y = tan-* f. 
r 

du 

^y_ — a 
^ r® 4- a*’ 

c*', 

Example 2. 

show that 

n 

Sr r® + a® 

{xom which expression x and y can be eliminated if desired. 

« =/(« + a, y + &), 

Su_^ and 
S* Sa dy db 

Here, u is not an arbitrary function of the four variables x, y, a, b, 

but depends on these variables only as they enter through their 

sums, X + a and y + 6. In other words, u is any function of turn 

variables, E and T, continuous together with its first derivatives, 

and these variables in turn are set equal to the above sums: 

« =/(X, F), 

X=x + a, Yr=>y + b. 

The derivatives of u with respect to the variables of the second 

class, (x, y, a, b), can be computed by the theorem of this paragraph: 

du _ df^ ^ ^ 

0X 8Y 0x 

=» A • 1 4- A' 0. 

da 

du du 
dz^^’ 

tn like manner the second equation is eatablidiaL 

Similarly, 

and hence 
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Bemark. In applying the theorem for the change of Tariabled, 

which is embodied in Formula (A), the student must make clear to 

himself at the outset that he has to do with two classes of independ¬ 

ent variables, — the variables of the fir^ doss corresponding to the 

[x, y) of the text, and those of the second doss corresponding to 

the (r, s) of the text. In the terms on the right-hand side of {A), 

the first factor is each time a derivative with respect to a variable 

of the Jlrst claas, and there are as many terms as there are variables 

of this class. The second factor is the derivative of one of the func¬ 

tions (2) with respect to the particular variable of the second doss, 

which has been singled out; and there are as many different equa¬ 

tions (A) as there are variables of the second class, for the complete 

solution of the problem consiste in finding not only du/dr, but also 

dufds, etc. 
EXERCISES 

. 1. If u — x^—y'^ 

and 

find 

2. 

dr 

X =:2r — 3 s + 7, 

y=—r + 3a — 9, 

In the preceding question, find 
ds 

Ans. ^=4:x + 2y. 
or 

3. If u = xy 

and 3! = a cos 6, y = a sin $, z = bO, 

find 
dn 

de 

4. If 

and X 

find ^ and 
or Os 

x-^rV y,= 
\ — xy 

tan(2r-s2), y = cot(r*s), 

6. If 

and 

n=f{x, y, z) 

»= ax' + hy' + 

y = aV + 5y ■+• cV, 

* = o'V-Hh'y + c"»'. 

show that dx' dx dy 
du 
dz’ 

and find g and g. 
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If Xssfoos^, yssrsin^ 

show that fduV . /du\* rdu\* , 1 fdu\* 
{dxj "^(^ay) \dr) 

Suggestion. Compute first ^ and in terms of 
cr dijk 

^and 
dx dy 

7. If «=/(*»). 

show that 
Bu du 
dx ^dy 

8. If ft II 

show that 
cx cy 

9. The Totol Differential. The Fundamental Lemma, Foi^mola 
(I) of § 3: 

Au == ^Ax-H0Ay-h«Ax-f-,jAy, 

affords an analysis, or breaking up, of the increment, Am, into two 
parts, each of which is simple for its own peculiar reason. The 
first two terms form a function of Aa; and Ay of the simplest imagi¬ 
nable type, — a linear function, for and dujdy do not depend 
on Ax and Ay. It is natural to define these terms as the principal 

part of the infinitesimal Au. The remaining terms constitute an 
infinitesimal of higher order. For, 

eAx-^^7Ay ^ ^ Ax ^ ^ Ay 

V Ax* + Ay* VAx* -I- Ay* Vax* -|- Ay* 

and each of the fractions on the right-hand side is numerically less 
than, or at most equal to, unity. 

Hence lim = o. 
(4». Ar)*(o,o) V^* -f Ay* 

We define the dijfbrential of m as the principal part of Au, and - 
write; 

<1) du-^Ax-hgAy, 

Boting well that the independent varialdes of the function u ate x 
aaoAp, 
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Since ^e d^nitdon holds for aU functions u, we may in partacti- 
lar set u ss z. It follows, then, that 

j dx . dx . 

= 1 • Aas + 0 • Ay, 

or dx= Ax. 

Similarly, on setting u = y, we infer that 

dy = Ay. 

On substituting these values in (1) we nave: 

(B) d« = g<to + |dy. 

Thus far, the independent variables have been * and y, and the 
infinitesimals dx, dy, being equal respectively to the increments Aa;, 
Ay, are independent, or principal, infinitesimals. If we introduce 
new variables as in § 4, setting 

(2) s), y = t/-(r, s), 

then dx and Aa; will in general no longer be equal, and the same is 
true of dy and Ay. Hence equations (1) and (B) cannot in general 
both be true, and there is no a priori reason to suppose that either 
will be. 

Funpamental Theorem ; The equation 

(R) dw = |^dx+|*dy 
ox cy 

holds, no matter what the independent variables be. 

Proof. When r and s are the independent variables, we have by 
definition: 

(3) 

da: = ^Ar+^As, 
dr C8 

dy = ^^r + ^As, 
or os 

where x and y are respectively the functions ^(r, s) and ^(r, s) of (2). 
On the other hand, by definition, 
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the fivst of equations (3) through by du/dos, the seooiid 

i)y ^/0y, and add. Thus 

(•) 
^ ^ _i_ ra« ^ ^ 

\_dx 8r dy dr j_2a> da dy SsJ 

But the brackets are equal by Theorem (A) of § 4 respectively to 

du/dr and d-ajda, and hence the right-hand side of (5) reduces to the 

right-hand side of (4). Hence the left-hand sides are equal, q. e. d. 

The number of variables in each class is arbitrary. In particular, 

if u depends on x, y, z, we have: 

, du j . du , , dn , 
du = —dx-\- — dy + — dz. 

dx dy 8z 

And again, if there is only one variable, as x, we have the equation 

of the Theorem on p. 93 of the Introduction; 

du=^dx. 
dx 

But this equation now holds not merely when x depends on a single 

variable, as t, but when x is a function of any number of variables, 

as r, s, •••. 

It is possible to look on the individual terms in the right-hand 

side of equation (B) as the principal parts of the partial increments 

in the function u, due to varying one argument at a time: 

A,w =:/(x -P Ax, y) -fix, y), 

j du , 
d.u=-dx, etc., 

and to write: 
du = d,u + d^u. 

From this point of view, du is spoken of as the total differential of u, 

and it appears as equal to the sum of all the partial differentiala, 

d^u, d^u. But these partial differentials are of little use in practice, 

for it is not possible to pick to pieces a partial derivative, du/dx, 

and regard it as the quotient of an infinitesimal, du, by a second in¬ 

finitesimal, dx* 

* The equation we should like to write from this point of view, namely. 
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The geometric repreaent&tioQ of the difPerential in case of 

fonctions of two independent variables has already been pointed 
out; Introduction^ p. 444 

It is readily shown that the general theorems relating to the 

diSerentialB \>f functions of a single variable: 

d{cu) = cdu 

d(u + v)=sdu + dv, 

d(uv) = udv + V du, 

hold for functions of several variables. Moreover, the differentml 

of a constant, considered as a function of several variables, is 0: 

dc= 0. 

Remark. The student may find himself confronted by a subtle 

difficulty in the theorem that “the differential of an independent 

variable is equal to the increment of that variable.” For, differen¬ 

tials have been defined only for functions, i.e. dependent variables. 

There are two ways out; (t) define the differential of an independ¬ 

ent variable! as equal to the increment of that variable; (tt) refrain 

altogether from defining the differential of an independent variable 

and consider dx, when x is an independent variable, to be the differ¬ 

ential of the function, u = x. 

The second alternative corresponds precisely to what is done, in 

an analogous case in the Calculus of Variations, in defining the 

variations 8y, &s, of the independent functions, y, *, •••. 

6. Continuation. Applications. By means of differentials it is 

possible to compute the partial derivative of a function when a 

change of variables has taken place. Let us treat the two Examples 

of § 4 by the new method. 

Example 1. usz e**, 

X s= log V»^ -f- »*, y = tan~* i • 
____________ T 

leads to the absurdity that 
1 = 8. 

We i^raln, therefore, once for all from uudertaking to give to 8x and Su any 

independent meanings, and regard the notation — as one homogeneous, albeit 
dx 

somewhat (domsy, yet universally accepted, expreation for the partial derivatiTe. 



CAljCtHAjS 

Store (fttasye^tto-i-aiewdy. 

Kott, equaticm holds, no matter whether the independent 

'variables be {x, y) or (r, a). In the latter case,* 

dx ss —-— hr H--— As, 
,8 + ^ ^r* + s* ’ 

dy = ——^ Ar 4- ^ ■ As. 
^ r> + si! r“ + s* 

Hence 

d„ = *-yrig Ar +As. 
4-«® r® 4- ** 

On the other hand, 
, du . , du . 

du = — Ar 4- ^ As. 
or os 

T?ims these two right-hand sides are equal to each other, and Ar and 

As are independent ■variables. This can be true only when the co¬ 

efficients of Ar are equal by themselves, and those of As are equal by 

themselves. For, we may set As = 0, Ar # 0, and then 

dr r* 4- 

But Ar 0, and so we can divide through by it. Thus we have; 

= and similarly, = 
dr + ds 7^+ s'‘ 

In substance, this solution is the same as that of § 4; it differs 

only in form. 

Example 2. If 

show that 

Write 

« =/(® 4-«, y 4-6), 

du du du^du 

dy db 

«=/(x, D, 

X = a!-|-a, r=y-b6. 

du=/idX 4-/xdF 

=fidx+fida J f,dy 4-/*d6. 

du = pdx 4- ^da 4- 4-|^d6. 
dx da dy db 

* It is immatorisi whether we write Ar and Aa or dr and ds^ eluee these tor 
hTtSttatoata axe equi^ to each otSaer. 
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Here, dx, •••, db are independent infinitesimals, and so the two ex¬ 

pressions for du can be equal only when the oorrespoinding coeffi¬ 

cients of da;, dft are respectively equal. Hence 

and thus 
du _du 
dx da' 

^_dji 
dy db 

EXERCISES 

Work Exercises 1-6 and 7, 8 of § 4 by the method of this 

paragraph. 

7. Law of the Mean for Pnnotions of Several Variables. Equa¬ 

tion (4) of § 3 embodies a certain form of the law of the mean for 

functions of several variables; but there is a more symmetric form, 

which is easier to remember and is equally useful in practice. 

Let /(x, y) be continuous, together with its first partial derivar 

tives, throughout the region 

a^x^a + h, b + k. 

Form the function 

^(t)=f{a-\-ih, b + tk), Ogtgl, 

and apply to it the Law of the Mean, § 2 : 

4'(1) - 4>(0) = *'(«), 0 < < 1. 
Hence 

(1) /(a + h,b + k) —f(a, b) + A/j(a + eh,b + Ok) + kf^ia -f M, b -1- Ok), 

where 0 < ^ < 1. 

Equation (1) expresses the Law of the Mean for functions of sev¬ 

eral variables, which we set out to establish, k and k ma.y, one or 

both, be negative; but & always lies between 0 and 1. The extension 

to the case of a function of more than two variables is immediate. 

8. Euler’s Theorem for Homogeneous Functions. A function u is 

said to be homogeneous if, when each of the arguments is multiplied 

by one and the same quantity, the function is merely multiplied by 

a power of this quantity. For definiteness we will assume three 

arguments: 

(1) u=sf(x,y,z), 

/(A», Xz) « XV(x, s, »). 
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71xe explicit fiinetioa sltall be denoted by /: 

*='/(*,»)• 
Thus 
(4) F[x,y,f(x,yy]=Q, 

Le. this equation is an identity, since it holds for all values of the 

arguments, x and y. 

The problem is to find dz/8x or fi{x, y), and similarly dz/dy. To 

do this, let 

(5) M = F(x, y, z). 

Then 

(6) du= Fidx+FidyFidz. 

This equation holds, not only when *, y, z are the independent 

variables, but also when, in particular, x and y are the independent 

variables, z being replaced by the function (3); cf. § 5, Theorem. 

Under this hypothesis we have: 

(f) u = const. (= 0). 

For, v^F[x,y,f(x,y)'], 

and the value of the right-hand side, by (4), is 0. Hence 

(7) du = 0. 

(CO + 

where dzjdx and dzjdy are the derivatives we wish to find, and 

moreover dx and dy are independent infinitesimals. 

Betuming to (6) we now substitute for du, its value from (7), and 

for dz its value from (it); hence 

0 = if’idx + F'jdy -f- dx + ^dy^ 

or (j'.+ F.|]<i»+(j'. + F.|^dv=0. 

Since dx and dy are independent infinitesimals, it follows that each 
parenthesis, by itself, must vanish; 
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Seaee 

(8) ^ = _ ^ r 
8x^ ^' 

dz 

with a similar equation for 8z/dy. 

This is the theorem concerning the differentiation of implicit func¬ 

tions, which we set out to prove. Observe that, in the differentiation 

on the left-hand side, the independent variables are x and y; whereas, 

in the differentiations on the right-hand side, the independent 
variables are x, y, and 2. 

Both theorem and proof apply to the case of any number of vari¬ 

ables. Thus if 

(9) F{x, y) = 0, 

(10) dy dx 

dx ~dF' 

It is often convenient to designate the dependent variable in the 

explicit form by u; 

(11) 
Then 

F(u, X, y, z, —) = 0, 

W y, Z) —)• 

dF 

(12) du _ _ dx 

du 

with similar formulas for dufdy, dufdz, etc. 

Example. Differentiate 2 partially, where 

-l-y+5- = l. 

Here 

2x,2z8z 

o* c* dx ’ 

V (?dy 

dz _ 
dx a*»’ 

dz ^y 

dy &»«■ 

and we have; 
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Eenuirk, We might equally veil haye asstuned the implkit 
equation in the form 

F(u, ®, y, *, —)=C, 

where C is a constant The result^ (12), would be of the same 
form. 

Thus, in the above Example, we should have: 

the remainder of the work being as before. 

EXERCISES 

1. If on o, find 
dp 

S. If s is defined by the equation 

+ y»=:3aqp!, 

y(r”=«sina;, find 
dx 

u y), 

^ ^ w/i(igM> y) 
Sx 1 — »/,(»«, y) 

show that • ^ = 
Sx l-xMxu,y) 

6. If «=/(* — «, y — tt), find 

6. Show that, if F(x, y, «)=? 0, 

^ ^ FgF! — 2 FuFiFj -f FiiJ? 
2!? ’ 

, . 3*j( , She 
and compute and —. 

oxdy dy* 

10. ContinnatioB. Sinmltaaeous Equations. Let the functions u 
and V be defined by the simultaneous equations; 

(1) F(tt, v,x,y)=0, ♦ (u, V, X, y) = 0, 

where F and *are continuous, together with their partial derivatives 
of the first order, in the neighborhood of a point (u„ v„ x^, yj, and 
both vanish there: 

^ ».* <%. y«)- 0, ♦(«,,«», a\», yo)» 0. 
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We will demaad futthermore that the Jacobian determinant, 

dF ay 

W ^ ^ ~ d(u,v)' 
du dv 

be different from 0 in the above point. The explicit functions shall 

be denoted by f and : 

(4) u =f(x, y), V * 4.(0!, y). 

Thus we have the identities: 

(6) J?'[/(a!, y), </.(*, y), X, y] = 0, «■[/(», y), «^(®, y), *, y] = 0. 

The problem is to compute the derivatives of the first order of 

the functions u and v, namely, 

du du dv dv 
a*’ dy’ dx’ dy 

The procedure is similar to that of the preceding paragraph. 

, U = F{u, V, X, y), • F= 4>(w, V, X, y). 
Then 
.gx f dU= Fidu +Fidv + F^dx + Fidy, 
^ I dF== *id(t + 4'2d^> 4-4*8^3! + 4>4dy. 

These equations hold, no matter what the independent variables 

may be. In particular, then, we may replace « and v by the func¬ 

tions (4). We then have 

and hence 

U = const, (sss 0), 

dU=0, 

du = ^cbi + pdy, 
dx oy 

F= const. (=0), 

dF=0; 

dv = ^ dx -I-1^ dy. 
cx dy 

On substituting these values in (6) and collecting terms, the fol¬ 

lowing equations result: 

with a similar equation, in which F is replaced by ♦. Since dx and 

dy are independent infinitesimals, the individual brackets must aU 

be 0. Hence 
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Vitii & simi^ paic of equations du/^ and dv/dy. 

On solving these equations we find: 

(9) 

F, F, 

4>, 

dx Ft F, 

4>i *s 

Ft F, 
du_ *4 ^ 

^y~ Ft F^ 
4>i 

with similar equations for dv/dx and dv/Sy. 

We have assumed two variables, x and y; but the number here 

is arbitrary. We may have a single variable, a;; or we may have three 

variables, x, y, z-, or any larger number. Moreover, both theorem 

and proof admit immediate extension to the case of n equations, 

liftfining a system of n functions. Thus, if 

(10) 

define the functions 

u=f(x,y,---), 

F(u, V, w, x, y, —) = 0, 

*(m, V, w, X, y,...) = 0, 

*(«, V, w, X, y, •••) = 0, 

V = i>(x, y,y,...), 

we have; 

du _ 

Ft F^ Ft 
*4 

’*^4 ♦s du_ 

Ft Ft Ft 

‘t’s *2 *1 

'I'S 'J’2 

dx Ft Ft Ft dy Ft Ft Ft 
4>i <l>, *i 

*i *1 % ♦l *> 

etc. 

where the denominator is the Jacobian determinant with respect to 

u, V, w, 

(12) 

dj; d_F 

du dv dw 

89 d9 89 

du do dw 

89 89 

8u dv dw 

S(F, », ♦)^ 
0(u, V, w) ’ 

whidli is required to be different from 0. 

Second M^od. We have deduced equations (B) by the method of 

difiEerentials. It is, however, possible to obtain them directly from 

the identities (5) by differentiating the latter equations partially with 

respect to a; 1^ the theorem of § 4 This method has the advantage 
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ijiat the computation is thus systematically arranged, and so i^ere is 

less chance for numerical errors to creep in. 

Example. Given the equations: 

To find I??. 
ox 

u* + xo = y, 

e* + yw x= as. 

Differentiating these equations with respect to as, we have: 

o «3u . dv , r. 

,| + 3V|S.1. 
cx ox 

Hence 
Bu _ as + 3 'B* 

035 3^—9 uh)* 

EXERCISES 

1. Compute 8u/By in the Example of the text. 

2. If 

8. If 

asw2 -I- yv> = asy*, 

yu* — aw® = x^y, 

XU + uv — V = sfi, 

15® — a5v 4- w = 35®, 

find 

find 

By 

du 

dx 

4. Compute 8v/8x and Bv/By in the Example of the text from 

Equations (9). 

6. Compute Bv/Bx, BvjBy, dv/Bz from equations (10). 

11. The Inverse of a Transformation. The idea of a transforma¬ 

tion of a plane has been set forth in the Analytic Chometry, Chap. XV, 

p. 330, and the student should be familiar with the examples there 

discussed and with their analytic treatment. Moreover, he should 

of his own initiative extend the simpler of these examples to space 

of three dimensions, availing himself of the treatment of the analyti¬ 

cally kindred problem of the transformation of coordinates, given 

in the last chapter, p. 592. 

These examples illustrate what is meant in the general case by 

the transformation of a region S of one plane on a region 2 of the 

same or a second plane. Let P: («, v) be any point of 3, and let 
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Q:{», If) be the point of S into which P is carried bj the g^vnn 

transformation. Then x and y are fmtiiona of u and v: 

Fio. 36 

(1) 
as - /(u, v), 

y = ^{u,v). 

We will assume these functions to be 

continuous, together with their first 

partial derivatives, and we will de¬ 

mand, furthermore, that the Jacobian determinant, 

du dv _ d{x, y) 

8<l> dtft d{u, v)’ 

du dv 

vanish at no point of S. 

Since by hypothesis the relation of the points of 5 to those of % 

is one-to-one, an arbitrary point Q: (as, y) of S leads to one and only 

one point, P, of 8. Hence the coordinates of P, namely, u and v, 

are functions of those of Q, i.e. x and y: 

(2) I u =» F(x, y), 

\ V « *(®, y), 

and these functions are continuous, together with their first partial 

derivatives, as will be shown in detail later; § 12. 

The pair of equations (2) expresses explicitly the transformation 

of the region S on the region 8. This transformation is called the 

inverae of the given transformation, which is expressed analytically 

by equations (1). 

Even when / and are simple functions of u and v, it is often 

impossible to express F and « in terms of the functions with which 

we are familiar, and so the derivatives of F and 4> must be com¬ 

puted indirectly. This can be done by the method of § 10, for we 

need merely set 

(3) f(u, v)-x = 0, ^(u,v)~y = 0. 

It is instructive, however, to apply the second method there set 

forth. If we substitute for u and r in the first equation (1) the 

functioim F(x, y) and 4(x, y) respectively, we have an identity in 

X and y. 

(4) X s/[>(», y), «*(*, y)], 

j.e. in rite last analysis, the equation xtmx. We may, therefore, 

diSerentiate each side of this equation, which we will retain in the 
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form (1), partially with respaot to x, according to the theorem 

of §4: 
*■ ^ dxSu dxdv 

da dx dv dx' 

and it is important to understand what these partial deriratiyes 

mean. In dr/du, the independent variables are u and v, and the 

dependent variable is the function x =/(m, v). In ^ujdx, the inde¬ 

pendent variables are x and y, and the dependent variable is the 

function « = F{x, y). Similarly for the second term. 

Equation (6) is an equation for two of the unknown derivatives, 

dufdx and dvfdx, which we are trying to find, in terms of deriva¬ 

tives of the given functions. A second equation connecting these 

unknown derivatives can be found by the aid of the second equar 

tion (1). Here we have the identity in x and y: 

(6) y=,^[F{x,y),ib{x,yy]. 

Hence, differentiating this equation, written in the form (1), par¬ 

tially with respect to *, we have: 

(7) du dx dv dx 

Equations (5) and (7) are a pair of simultaneous linear equations 

for the two unknowns, du/dx and dvjdx, and they can be solved by 

the methods of high school algebra. 

Example. Let the given transformation be represented by the 

equations: 
[ X = 3 tt — 8 r, 

I y = 2«- 6 V, 

(ii) 

The inverse transformation will then be given 

{::: 

corresponding to (1). 

by the equations; 
w= — Sx-|-8y, 

• 2 X -f 3 y, 

corresponding to (2). 

To find the derivatives by the method set forth in the text, differ¬ 

entiate each of the equations (i) partially with respect to x: 

du Q dv 
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On sniving equations for dn/£x and dv/dx ire find: 

Su 
dx 

6, -2. 

The lesolt agrees with that which can here be obtained direct!; 

differentiating the equations (it) with respect to x. 

The student should verify equations (4) and (6) in the case of this 
example. 

EXERCISES 

1. If 

E.d^. 
dx 
f 

2. If 

x = u + v, 

y = u* +1)*, 

x = u + v+w, 

y = tt* -f D* + to*, 

z = u* + »* + to*, 

show that 

and compute 

8. If 

du_oto(to — v)_ 
dx (u — v)(v — to)(to — u) ’ 

du 

dy' dz' 

x = u + ve', 

y = u, 

find dv/dy by the method of the text. 

Solve the given equations for u and v, and verify the result ob¬ 

tained for dv/dy by direct computation of this derivative. 

4. Verify equations (4) and (6) of the text for the case of the trans- 
formaticm given in the preceding question. 

12. An Exixtenoe Theorem. In § 9 we have considered an implicit 
function defined by the equation 

(1) J^(«, *,y) = 0, 

and we have assumed that this function,, 

(2) «“/(».!/)» 

Va with its first partial derivativeB. Very mm- 
pie examples suffice to sliow that equation (1) zoay not gire rise to 
«n«b a fnnotion as (2). Thus the equation 

^ + + + 
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lias BO TDots, for 4&e sum of three sq^uares caonot be equal to — L 
Again, tiie equation ' 

(4) 2?’(M,a:,y)ant* + a!* + y* = 0 

admits only the single solution, (0, 0, 0), and so, again, fails to define 
a function (2). Finally, the equation 

(6) F{u, X, y)=a(u— a^)’ + y* = 0 

defines, not a surface as represented by (2), but a curve, namely, 

(6) u = a^, y=0. 

Is it possible to tell from simple properties of the given function 

F{u, X, y) when equation (1) will define a function (2) with the proper¬ 

ties presupposed in § 9? The answer is affirmative, and is given 

by the following theorem. 

Theorem. Let F(u,x,y) be continuous, together with its first 

partial derivatives, throughout a certain neighborhood of a given point 

(“oj yo)- ^ vanish at this point, but let dFjdu be different from. 

0: 

(7) F(mo, ao. yo) = 0) ®o» 3/o) =5^ 0- 

Then there is a function of x and y, 

(8) «=/(*. y)» 

continuous throughout a certain neighborhood of the point {Xg, y,) ond 

taking on the value u, there: 

Wo =/(»o» yo). 

which function saiisfies the equation 

(9) F'(tt, *, y)=0; 

i.e. t//(a!!, y) be substituted for u in the given function F{u,x,y), the 

laMer vanishes identically: 

(10) F[/(x, y),*,y] = 0. 

Moreover, the only triples ofvcdms, (u, x, y), which lie in the neighbor¬ 
hood of the point (wj, x„ y,) and satisfy equation (9) are those which 
are oonneded by the equation (8). 

Finally, this function, /(», y), has continuous first deriijaliues. 

This thnomm would seem in one respect to be unsatisfeotory, in 

tiiat it does not tell ns how large these “ neighborhoods ” are. The 
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neighborbood of tbe point (u,, a^, may be taken as tbe points of a 
oextain leotangnlar parallelepiped: 

\x-si!^\<A, \y^y,t\<A, \u-u^\<B, 

wbere A and B are two constants wbicb may have to be chosen feej 

smalL And then tbe function /(x, y) is to be considered only for 

tbe points of a certain square, 

1X - Xo i < A, 1 y - J/o 1 < li, 

where h is surely not greater than A, and may be less. These re¬ 

strictions, on the one hand, lie in the nature of the case. The 

theorem is not true in general if they be removed. On the other 

hand, the theorem, restricted as it is, is nevertheless exceedingly 

useful in practice. 

Of course, the number of variables (x, y, •••) is arbitrary. If F 

depends only on two, F(u, x), then / will depend on one, 

u =/(x). 

And if Fdepends on n -f 1, F{u, Xi, •••, x,), /will depend on n: 

« =/(a’i. *«)• 

A proof of this theorem and the following will be found in 

Ooursat-Hedrick, Mathematical Analysis, Yol. I, Chap. II, § 20, and 

in the author’s FunktionerUheorie, Vol. I, Chap. II, § 4. The latter 

treatment lays stress on the geometrical interpretation of the 

analysis employed. 

The partial derivatives of u are computed by the method set forth 

above, in § 9, and the formulas (8), (10), (12) there obtained give the 

solution of this part of the problem. 

Oeom^ric Evidence. In the simplest case, namely, that in which 

the number of variables is two, and it is thus a question of showing 

that the equation 

(11) J?’(«,x)=0 

determines a curve, 

(12) w=/(x), 

it is possible to make the truth of the theorem plausible geometri¬ 

cally as follows. Consider the surface, 

* = F{u, x). 

This surface meets the coordinate plane s = 0 in the point (u, m, s) 
w(t(g, x„ 0), and it is not tangent to it there, but actually cuts it at 
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aa angle. For, the direction components of the normal to the 

surface are proportional to FJu,x), F^(u,x), —1, and since 

FJfl^, a;a)i^0, the normal cannot be perpendicular to the axis of u. 

Since the surface, moreover, is smooth in the neighborhood of the 

point in question, we should expect any oblique plane to cut it in 

a smooth curve. Finally, we see, if this be granted, that the curve 

is not perpendicular to the a^-axis at the point in question, and so it 

is reasonable that its equation be expressible in the form (12). 

The case of the inverse of a given function, which we have met 

repeatedly in the study of the Calculus, could be related directly to 

the foregoing, but is better dealt with as follows. Let a; be givmi as 

a function of u, 

(13) X = <^(u), 

where ^(«) and its derivative, <^'(m), are continuous at 

u =s Uj, and Then the equation defines u as 

a function of *, continuous and having a continuous first derivative 

in the neighborhood of the point x = where = <^(M(,). For, the 

curve which is the graph of equation (13), w being plotted as the 

ordinate and x as the abscissa, has a tangent at the point (Ug, x^ 

which is not parallel to the tt^axis. Hence a line x = x', where xf 

differs but slightly from x„, will cut this curve in just one point, 

and the ordinate of this point will be the inverse function 

(14) «=/(x). 

Simultaneous Equations. The theorem admits extension to a si> 

multaneous system of p equations which determine p implicit func¬ 

tions. For definiteness, we state it for the particular case, p — 3. 

Thsokem. Let the functions 

F(u,v,w,x,y, *(«, V, to, X, y, .•■), 4'(m, v, to, x, y,—) 

be continuous, together with their first partial derivatives, throughout a 
region, 

(13) |u—Uo|<B, I® —Uo|<J5, Ito —tOo|<J5, 

lx-xbI<A, ly —yol<-4, —, 

and let them all vanish at the point (tig, Vg, «g, x^, Va, •••)>' ^ ^ Jaco¬ 

bian determinant. 

be different from 0 there. Then there exist three functions 

d(F,9,*)^ 
d(u, V, w) ’ 

Fio. 38 



CAJUCUMJa 

(14) «mf(m, y, •••), V■» ^(<B, y, —)« '■« =»y» •••)» 

mcA oonitnuous throughout a region 

(16) la!-i?a|<A, Iy-yn|<A, —, * S-4, 

and taking on the re^ective values ug, Vq, tOg in the point (seg, yg, •••}, 

wAicA functions satisfy the simultaneous equations 

(16) F(u, V, w, X, y, —)= 0, *(u, v, w, x, y, ...)= 0, 

♦ (u, V, 10, *, y, ..•)=0. 

Moreover, the only sets of values (u, v, to, x, y •••) which lie in the 

region (13) and satisfy the equations (16) simultaneously are (pro¬ 

vided A and B are suitably restricted) such as are given by equa- 

tiOHS (14). 
Finally, the functions (14) have continuous first partial derivatives. 

The derivatives of the functions (14) can be computed by the 

method set forth in § 10. 

l%e Inverse of a Transformation. Let the transformation 

(17) x=f(u,v), y = «#. («, v) 

be given, where f and ^ are continuous, together with their first 

partial derivatives, throughout the neighborhood of a point (ug, og), 

and let asg, yg denote respectively the values of these functions at this 

point. Let the Jacobian determinant, 

J 
d(u, v) 

be different from 0 at (ug, Og). Then the inverse of the transforma¬ 

tion (17) is represented, in the neighborhood of the point (ug,Vg) 

and the point (a^, y^), by two equations, 

<1^ tt = F(x, y), v= *(0!, y), 

where F(x,y) and ^(x,y), together with their first partial deriva¬ 

tives, are ooittinuous throughout a certain neighborhood of the point 

(ah Vi)- 
theorem holds for a similar transformation in any number of 

variaides: 

(19) f a 1,2, •••, n. 
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J = 

13. CsnoerniBf Jaeobimu. The Jacobian of a set of ; funetioiu 

of p independent variables, as (p a 3): 

(1) y, z), v=ik{x,y,t), w »■ ^(jc, y, z), 

namely, the determinant 

du du du 

dx dy dz 

dv d-v dv 

dx dy dz 

dw dw dtp 

dx dy dz 

is often represented, as we have repeatedly had occasion to remark, 

by the notation 

(2) J= 
y, *) 

«. =/.(.vu —, y,). *■ “ 1. "» 

y< = f = i, —, n, 

If 

and 

it can be shown that 

^(«i. ,«.) g(yi, —.yJ. 

2(»i, *,) ^(yi, y») ^(*1, a-'.) 

Cf. Jordan, Coura d'analyse, Vol. I, 3d edition, 1893, p. 89. It is 

assumed that the functions /, and are continuous, together with 

their first partial derivatives. 

If the equations 

(4) ®, =/.(yi, —, y.), »= «» 

represent a transformation with non-vanishing Jacobian 

■•3^g(gi, —, a;.) 

^(yi, yj’ 

and if the inverse transformation be given by the equations 

(6) y. = ^.(*1,..., *,), t«1, n, 

then the Jacobian of this transformation, 

j-g(yi>->y.) 

is the reciprocal of j: 

(6) 1, or ^ 

For here it. =aa5j, ^ 

and tiins the left-hand side of (3) reduces to unity. 

i 1, n. 
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> Qmauiini^ Meaning of the Vcmiahing of (fte Jaeebian. Cmsidet 

equations 
«=/(*.»)» » = <l>{x,y), 

wbere / and ^ are continuous, together with their first partial de> 

rivatives, throughout the neighborhood of the point (x^, yo)» a-nd let 

ti, s=/(a\„ yo), v„ = th(aio, y,). If the partial deriyatires of / do not 

both vanish there, the equation 

/(*, y)-w = 0, 

where u is a parameter to which are assigned values near Uq, yields 

a one-parameter family of curves coursing the neighborhood in 

question, one and only one curve going through any given point of 

this region, and each curve being smooth and free from multiple 

points. For, the above equation can be solved for y in terms of a» 

and u, or else for x in series of y and u, the function thus obtained 

being continuous. 

Similarly, if the partial derivatives of 4> nre not both 0, the 

^(*,y)-u = 0 

represents a second family of the same character. 

The curves 

/(ar,y)-uo>=0, <^(a!, y)-d, = 0 

will be tangent to each other at (a%, y,) if and only if 

/. • <t>, —fv '■ 4>y 

there, i,e, if and only if the Jacobian 

dy 

dx dy 
vanishes there. 

The assumption that J*# 0 at (asp, yo) carries with it, because of 

the continuity of this function, that J does not vanish at any other 

point of a suitably restricted neighborhood of {xq, yo), and hence the 

two curves, one from each family, which go through an arbitrary 

point of this region out each other at an angle which is different 

from 0 or *. It is plausible geometrically, therefore, that these 

mirves can have no second point of intersection in the neighborhood 

of (ah>9«); for, the directions of the curves of one family vary only 

slightly from one amriher; and similarly for the other fhmily. But 
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this means pteoisel^r that the equations (1) admit a single-Talued 

inverse. For it says that, to an arbitrary pair of values (u,v) neser 

(uo,Vg), there corresponds one and only one pair of values (x,y) imar 

If three equations be given: 

« =/(*! y> *). ® y, *), to = ^(x, y, z), 

where f, xfi are continuous, together with their first partial deriva¬ 

tives, in the neighborhood of {x^ y^, and the derivatives of no one 

of the functions are all zero at this point, then each of the equations 

represents a one-parameter family of surfaces coursing the region in 

question, one and only one surface going through each point of the 
region. 

The vanishing of the Jacobian, 

j_g(«, 'o,to) 
y, *) ’ 

here signifies that all three surfaces are tangent to the same line. 

For, if no two of the surfaces are tangent to each other at the 

point in question, the direction components of the curve of intersec¬ 

tion of the first two will be : 

/* /• fi fi fi ft 

and if J =s 0, then 

ft ft fa 
+ 'l>i fl 

<h 
+ h fl ft = 0, 

or, the normal to the third surface is perpendicular to this curve. 

We see, then, that, if J^O, no two of the surfaces can be tangent, 

and the curve of intersection of two of the surfaces cuts the third 

surface obliquely. And now reasoning similar to that of the fore¬ 

going case leads to the inference that an arbitrary set of values 

{u,v,t/n) near gives rise to surfaces which cut in one and 

only one point in the neighborhood of (a%, z^). Hence the in¬ 

verse transformation is also single-valued. 

In the case of a transformation (4) with « > 3, the geometric evi¬ 

dence is lacking, since we should need a space of n > 3 dimensions. 

The analytic proof, however, applies equally well, no matter how 

large n may be; cf. Goursat-Hedrick, Mcithematical Analysis, YoL X, 

p. 46, S 25, or the author’s FwnMionentheorie, Vol. I, Chap. II, §§ 6-7. 
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Vimi^ag aftke Jaco^imi, If J&oobwn of the fmo- 

tiom (1) 'rajuahes uientioally, these ftmctioos are ooimeoted a 

xelatioa 0(tt, V, to)=0, 

where O is oontiuuoas, together with its first partial derivatires. 

The theorem holds for any number of variables. Gf. Jordan, 1. c., 

and the author’s PuaktioMrUheorie, Vol. II, p. 122. 

14. A Qaeition of Hotatioa. Problem. Suppose 

«“/(*• y). y = ^(a', *); 

to find ^ • 
dx 

Before beginning a partial differentiation the first question which 

we must ask ourselves is: What are the ind^ndent variableet 

Hitherto the notation has always been such as to suggest readily 

what the independent variables are. In the present case they 

may be: 

(a) X and y; or (b) x and z; or (c) y and z. 

We can indicate which case is meant by writing the independent 

variables as subscripts, thus: 

(a) (b) 
^ ' dx ’ ^ dx 

In case (c) has no meaning. 
cx 

In case (o), = /i(a;, y). 

Csise (6) can be brought directly under the method of § 4 b; in* 

troducing a new letter in representing the independent variables of 

the second class: 
(independent variables of 

the 1st class, (z, y); 

(independent variables of 
tbe 2d dass, (r, z). 

Thus fiow becomes — and can be computed in the usual 
cx dr 

y), 

■r, y=<l,(r,zl 

manner: 
du dudx 
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In IQiennodjmainias, the pressure, p, tiie Toloiue, v, and idie tenif 
peratore, t, are connected bj the so-called chaaraeterittie «^aMon, 

^(P, v,f} = 0, 

and so only two of these three variables can be chosen as indepen¬ 

dent. It may happen that the pressure can be expressed as a func¬ 

tion of the temperature and the energy, E: 

p = F(t,E), 

and that it is convenient to express the volume by the charaoteris- 

tic equation as a function of t and p: 

V = *(f, p). 

A notation which the physicists use to express and is: 

(s), 
(I), 

the subscript indicating the variable which is held fast. 

EXERCISES 

1. If u — 2xy 

and 2®-t-3y-h5* = l, 

explain all the meanings which may have, and evaluate this 
ox 

derivative in each case. 

2. Show that 

8. Prove: 

16. Saudi Errors. In the case of functions of a single variable 

we have seen that the linear term in the expansion of Taylor^s 

Theorem: 
/(») =/(a>o) +/'(«%)(* - »o) + 

mtn frequently be used to express with sufficient accuracy the effect 

of a smdl error of observation on the final result, cl Introduetion to 
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ike de^hdue, p. 417, $ 16. This tem, /'(avt)(» — » pteoisely 

the diffiiareatial of the fonctioQ, <3\f, for x sa 

The differential of a function of several variables can be used for 

a similar purpose. If x, y, are the observed quantities and u the 

magiiitode to be computed, then the precise error in u due to errors 

of observation Ax = dx, Ay =s dy, etc. is Au. But 

du=|idx + |idy+ ... 
ox dy 

will frequently differ from Au by a quantity so small that either is 

as accurate as the observations will warrant, — and du is more 

easily computed. 

Example. The period of a simple pendulum is 

To find the error caused by errors in measuring I and gr, or in the 

variation of I due to temperature and of g due to the location on the 

earth’s surface. 

Here dT=^dl 
■y/ig g ^g 

or 

T^2l 2g’ 

and hence a small positive error of k per cent in observing I will 

increase the computed time by per cent, and a small positive 

error of ¥ per cent in the value of g will decrease the computed 

time by ^ k' per cent. 

EXERCISES 

1. A side c of a triangle is determined in terms of the other two 

sides and the included smgle by means of the formula: 

c* =s a* H- ^ — 2 oh cos w. 

Find approximately the error in c due to slight errors in measuring 

a, b, and w. ilns. The percentt^e error is given by the formula: 

de (a — 6 cos <■>) da +(& — a cos id) dft + g68inn»d<i» 

c 0*4-6® — 2a6co8(i) 

S. Find approximately the error in the computed area of the tii 

angle in the preceding question. 
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S. The acceleration of gravity as determined by an Atwood's 

machine is given by the formula: 

Find approximately the error due to small errors in observing s and t. 

4. Describe an experiment you have performed to determine ^e 

focal length of a lens, recall the relative degrees of accuracy you at¬ 

tained in the successive observations, and discuss the effects of the 

errors of observation on the final result. 

16. Directional Derivatives. Let a function 

« =/(*! y) 

be given at each point of a region S of the x, y plane and let a curve 

C be given passing through a point P: (a^, ^o) v| 

of the region. Let P be a second point of C, 

and form the quotient: 

iipf *” Vfp 

pp 
Fio. 37 

The limit of this quotient, when P ap¬ 

proaches P, is defined as the directional derivative of u along the 

curve C. We set Uf> — Up = Au, PP' = Ai, and write 

d( 

If, in particular, C is a ray parallel to the axis of x and having 

the same sense, the directional derivative has the value of the partial 

derivative, du/dx; if the ray has the opposite sense, the directional 

derivative is equal to — dujdx. A similar remark applies to the 

axis of y. 

To compute the directional derivative in the general case we make 

use of the Lemma of § 3; hence 

or 

(1) 

CX 

du Bu , Bu • 
= — 008 a -H TT- sin a. 

Bx By 

The extension of the definition to space of three dimensions is im¬ 

mediate. We have: 
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irhew a, p,y are the direction angles of C at P. 

EXERCISES 

1. If a normal be drawn to a plane curve at any point P and if r 
denote the distance of a variable point of the plane from a fixed 
point O; y, the angle between PO and the direction of the normal, 
show that 

(3) dn 
— cosy. 

2. Explain the meaning of ~ and show that 
or 

w dn _dr 
dr dn 

17. PotentiaL Let a particle of mass m be situated at the fixed 
point A; (a, b, c), and let a second particle, of mass unity, be situ¬ 
ated at the variable point P: (*, y, z), distant r from A. Then the 

force with which these particles attract 
each other, measured in gravitational 
units, will be 

Consider, in particular, the force which 
the particle at A exerts on the particle 

at P. Its components along the axes will be 

If we consider an arbitrary direction from P, whose direction 
angles are a, /?, y, the component of the attraction along this direc¬ 

tion will be H = PC08*, 

where c denotes the angle between the direction and PA. Since by 
the cosine formula {Analytic Oeometry, p. 426) 

X — a V— b n z — c . cos C as-(X)B a — 2-cos -cos y, 
r r r 

weJjaTe 
(8) d SB JST cos «-I- Fcos iS -I- Z cos y. 
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Let us form the fonction 
m M =—, 

known as the potential of the mass m. Its partial derivatiTes are 

seen to give precisely the components of the attraction along tiie 

axes: 
du _ mdr 
dx r* dx' 

r* = (a — a)’ + (y - 6)* + (* — cf, 

(5) 

hence 

Similarly, 

2r^g = 2(x-a), 

3u _ /_ •ni\fx — a\__ 

dx \ r J 

dr _ x — a_ 
dx 

m- 

r 

X — a 
iX. 

du 
dy 

8m 

dz 
= z. 

On substituting these Talues of X, Y, Z in (3), the right-hand side 

becomes 

cos « ^ cos cos y. 
dx dy dz 

But this is, by (2), § 16, precisely the directional derivative along the 

given direction, or — • Hence 

(6) “ - 

and we thus have the theotem: The component of the attraction dm to 

the mass m, situated at is given by the directional derivative of the 

potential function (4), token along the direction in question. 

The Case of n Masses. If, instead of a single mass at A, there 

n masses, m,, ••*, «i„, situated respectively at the points A^, •••, 

then the potential of these masses at the point P is defined as 

function u, where 

(7) r. r. T- " ft 

denoting the distance from Pto^t:(o»,6*, c*). Thus 

rj =» (* — o*)* +(y — 6*)* +(* — c*)*. 
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The oomponents of the attraotioa on a unit particle at P are giren 

by the same formulas as before, namely: 

(8) ^U_ y tdu 

dx~ ’ 

(10) 

It will be shown in Chap. XI, § 2 that the change in the value of 

the potential function, when the unit particle at P describes an ar> 

bitrary path, is equal to the work done on this particle by the forces 

exerted by the n masses, and hence this function u is sometimes 

called force function^ 

EXERCISE 

Show that the potential function satisfies Laplace’s Equation: 

The student will find elaborate applications of partial differentia¬ 

tion, taken from life (differential geometry, mathematical physics), 

in Groursat-Hedrick’s Mathematical Analysis, Vol. I, Chap. U. 

1. If 

and 

find 
du, 

da 

2. 

and 

find 

U 

du 

dq 

8. If 

find 

4. 

find 

dx 

11 

dx 

EXERCISES ON CHAPTER V 

^ _coBy 

X 

X = r® — 8, y = e*, 

M =s €*■'“» 4- xlog(x -t- y) 

X = pqr, y s= r sin-‘ (gr), 

yx» = sin x, 

(■«» +v*-f a^=:3y, 
[tt*-hv* + y*== —3», 
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6. S 

and 

find — • 
ox 

8. If 

findg. 

7. If 

find|H. 

8. n 

find^. 
ax 

r-.2ttv 

+ =3y, 

U* + «* + y’=a — SiB, 

tt* + SBV = y, 

»• + yw = ar, 

««• + vx = y sin u, 

u cos u = ai’ + y% 

XUUV c= V + X, 

— XV = u — sfif 

9. If 

show that 

and find ~ 

10. n 

OX 

XssU + V + W, 

y = W* + V* -f 10*, 

z = u’ + o’ + to*, 

3tt_vw (to — o)_ 

dx (u — v)(v — w)(w — u)’ 

X = « 4- o + w, 

y = wo 4- vto 4- tow, 

z = woto. 

{X as U 4- vw’ , 
y = V - wv“, 

find I?. 
3x 

19. If w or x* 4- y* 4- *’ 

explain all the meanings of 
ox 

and » = xyt. 
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It. n ( »-/(*.»>. 

show that 

Btd^ dz d<^ 
dz __dxdy dydx 
dx d<ft ’ 

By 

14. If u^f(x + ia,y + ^), 

show that 
du „Bu,odu 

V • 

and obtain the general formula for 
dt" 

IS. If ui=f(y + ax) + 4>{y 

show that B^u 9 d^u 
as a* — 

ax* By* 

16. If tt = II 

show that 
8u , Bu , 

Bx^^By 
0. 

17. Use the method of differentials to find and in 
' Ox dy dt 

terms of /i(f, y), /j(f y), if 

« =/(® + uf, y — ui). 

18. If u is a function merely of the differences of the arguments 

tsi, Xt, sc., show that 

du ■ du . 

dxi Bxf 
+pt=0. 

Ox. 

18. If u Baf(x, y) is homogeneous of order n, show that 

+ -^ +y» n(« - l)u. 
^dxBy ^ dy» ^ 

SO. Extend the theorem of Question 19 to the case of homogei» 

oas functions ^f three variables. 



31. Eitoad ^ theorem of Questicm 19 to the ease of deriTativee 
of the third order. 

32. If tt and V are two fonotions of x and y satisfying the relations: 

8u _dv du  dv 
dx dy dy dx 

show that, on introducing polar coordinates: 

a: = r cos <^, y = r sin 
we have 

_ 
dr rd<ft’ rdi^ dr 

23. Under the hypotheses of the preceding question, show that 

d^U 1 . 1 

dr^ r dr r* dtf>^ 

24. If 
/(*, y) = 0 and tt>{x, z) = 0, 

show that 
d<f) dfdy^dfdij) 

dx dy dz dx dz 

23. If Hp> v,«) = 0, 

show that 
dp dt dv _ ^ 

dt do dp 

Explain the meaning of each or the partial derivatiyes. 

26. If u is a function of x, y, z and x, y, z are connected a 

single relation, is it true that 

S>K^_du,jd^ ? 

dy dz dy 

27. If w =/(®, y) and v= <t>{x, y) are two functions which sat 

isfy the relations 
du _ 

dx dy ’ dy 

and if F is any third function, show that 

— 
dx' 

ftr* dy* \^y/ JV^M* 

38. If 

osarsin^oosS, yarsin^sinS, sarcos^ 
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sboir that 

/0r\* 
\^J V%/ \^/ t^ahi*^\d$ J 

29. If 

a; s r sin ^ cos y esrsim^sintf, 2 = rco8^, 

show that 

dw a»r 8^F I 1 I I I cot<^gF 

®®- dU=ddS-]^dv 

is an exact differential (p. 356), and if S and v can be expressed as 

functions of the independent variables 6, p, show that 

^_djo 

¥v~ dS* dp~ de‘ 

State what the independent variables are in each differentiation. 

51. Let x=/(t,u), y=4>(t,u}, z ==:>/;((, u), 

and 
d{t, u) 

If z == ♦(*, y) 

represents the relation connecting x, y, z, show that 

dz __d(x, y) ld(x, y) dz _d (x, z) jd (x, y) 

dx d{t,u)l d{t,u)’ dy d{t,u)l d(t,u) 

52. If 
« =/(®. y, *), V = <f,(x, y, z), w = ,/,(x, y, z) 

and x = ff(\,p), y = h(\,p), z = k(X,p), 

show that 

^ ^(v, w) 0(y, z) d(v, w) d(z, x) d(v, w) d(x, y) 

/*) ^(y, *) ¥) ^(*.») ¥) y) KK /*) ’ 
State the conditions of continuity which you assume. 

53. Let 
«=/(*, y), v=^(a!,y), 

the usual ccmditimis of continuity being assumed in the neighbor, 

hood of (sE^, fo). Show that the Jacobian is positive at (a!,, yg) if a 
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small oiide about this point, vhen described in the connter-dodLwise 

sense, goes over into a small oral abont (%, Vo), likewise described in 

the counter-clockwise sense. But when the sense is reversed, the 

Jacobian is negative. 

34. Let 

w=/(*. y,»), » ” «^(*. y,»)» « “ y> *)» 
8(u, to) ■ Q 

y. *) 
the usual conditions of continuity being assumed in the neighbor¬ 

hood of (av), yo> *o)- Show that the Jacobian is positive at (iCo, yo, *6) 

if the positive directions of the curvilinear coordinates (u, v, tv) are 

oriented there as the positive directions of the (*, y, *)-ooordinate8; 

otherwise, the Jacobian is negative. 

36. If F(u, V, X, y) and v, x, y) are two functions which satisfy 

the conditions of § 10, show that 

HF, *) 
g(M, y)_ ^(x,y) 

d{x,y) d(F,») 

8(w, v) 

Is the corresponding theorem true in the general case, n s n? 



CHAPTER VI 

APPUCATlOirS TO THE GEOMETRY OF SPACE 

1. Twig«it Plana and Vamai Line to a Surface, (a) Ea^ictt 

Form of the Equation of the Surface. Let the equation of the sur¬ 

face be given in the explicit form, 

(1) »=/(*,y)- 

Then the equation of the tangent plane at the point y^, Zg) is 

(Cf. Introduction to the Calculus, Chap. XV, § 3): 

(2) = + 

The equation of the normal line at the same point is 

(3) 
dz\ -1 

(I). (I). ^dxj, 

Finally, the direction cosines of the normal at an arbitrary point 

(x, y, z) of (1) satisfy the relations: 

cos a : cos B : cos y = — : — : — 1. 
ox Oy 

(6) Implicit Form. If the equation of the surface is given in the 

implicit form, 
(5) F(x, y, z) = 0, 

it follows then from (2) and the expressions for the partial deriva¬ 

tives, Chap. V, § 9, (8), that the equation of the tangent plane is 

<*> - *•> (f).<' —>' 

(0 

For the normal line, 

X — Xq . y —-Vo, Z — Zn 

\dxJo \dyJo \dzJa 

and for tihe direction cosines of Hie normal at (x, y, x), 

dx ' dy ' dz (») 
VJ7 c/r 

oo8<e:oo8^:oo8yB>— : — 

IB2 
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(«) J^Txtmetrie Form. Let the equation of the eurfaoe be giVen in 
the parametric form 

(9) X = /(h,' v), y=4» (a, v), g = ^ (u, v), 

where /, ^ are continuous, together with their first derivatives, 
and where, moreover, at least one of the two-rowed determinants 
out of the matrix 

(10) 

df ^ 

du du du 

df d<f> ^ ’ 
8'0 dv dv 

i.e. at least one of the Jacobians 

(11) 
g(yi i) d(x, y) 
d(u,v)’ d(u,v)’ d(u,v)’ 

is different from 0 at the point (tto, Vq) corresponding to (x^, yoi *b)- 
Then the equation of the tangent plane, as will presently be shown, is 

The equations of the normal line are 

(13) 
■*0 _ y — yo _ g —gp 

fd(^\ fd(z,x)\ fd(x, y)\ 

\d(u, v)Ja V^(«, v))o \d{u, v)Jo 

(14) 

The direction cosines of the normal satisfy the relations: 

8(v, z'' . d{z, x) . d(x, y) 
cos a : cos /3 : cos y 

d{u, v) d(u, v) d(u, v) 

The proof is given at once by Chap. V, p. 150, Ex. 31, from which 
it follows that (14) is true. 

EXERCISES 

1. On writing the equations of the sphere aj* y* s® a= a* in the 
parametric form: 

X 3a a sin <ft cos 0, y = a sin sin 9, z a: a cos 

show that the normal at an arbitrary point go^ through tiie centre. 
Ate there exceptions? 

S. Express the equations of the torus parametrically, and show 
that the normal at any point goes through the axis. Are there ex¬ 
ceptions ? 
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Sl Aaalftifl BepMMntatkm of Spaoe Carres. A raure ia apace 
may be given analytically by expressing its oooidinates 

(a) as functions of a parameter: 

(1) **/(0> *“^(0; 
(ft) as the intersection of two cylinders: 

(2) P = M^), 
(c) as the intersection of two arbitrary surfaces: 

(3) I’(x, y, z) = 0, ♦(*, y, z) = 0. 

A familiar example of (a) in the case of plane curves is the cycloid; 
also the circle. In the case of space curves we have the helix: 

(4) a; =B a cos y = a sin 0, z s> 

This curve winds round the cylinder *» 4- y* =a a*, its steepness always 
keeping the same. It is the curve of the thread of a machine screw, 
Le. of a screw that does not taper. Again, if a body is moving under 
a given law of force, the coordinates of its centre of gravity are func¬ 
tions of the time, and we may think of these as expressed in the 
form (a). But the student must not regard it as essential that we 
find a simple geometrical or mechanical interpretation for t in (a). 
Thus if we write arbitrarily: 

(6) a: = log<, y=sin<, zrm ^ :, 
-M+l* 

wo get a perfectly good curve, t entering purely analytically. 
In particular, we can always choose as the parameter t in (a) the 

length of the arc of the curve, measured from an arbitrary point: 

(6) »=»/(«), y = z = iA(s). 

The form (b) may be regarded as a special case under (a), namely, 
that in whidi « _ # 

On the other hand, it is a special case under (c). 

SeUrictioRs on the Functions. It is natural enough to require, in 
Case (&), that the functions and ^{x) be continuous, together with 

their first derivatives; and in Case (c), that the functions P(*, y, *) 

condWaons of the existence tbeotexa of CStei.p-^ > 
S 12. In C^e (o), however, the continuity of tiie foaotions /(0» 
together ^th that of their first derivatives, is not enoogh to insure 
a^e; for, this condition is satisfied wh«n all three fuactinM are 
amstants, and then equations (1) represmit a point 
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A.gain, the plane corro 

[7) y = P, i.e. y* = *», 
has a cusp at the origin, and yet the deriTatives of the functions of t 
are continuous there. 

It is sufficient, in order to avoid all these difficulties, to demand 
that the first derivatives of the functions of t, — namely, ^'(0, 
^(t), — never vaniah aimuUaneoualy, or that 

(8) 0 </'(«)*+ + 

and this condition shall henceforth be imposed in general. If, at a 
particular point of a curve, the condition is violated, such a point 
will usually be a singular point, as in the case of the curve (7) at the 
point t s 0. But this is not always true, as is shown by the example 

(9) x = P, y = P, i.e. x = y. 

Here, both derivatives vanish at the origin, but this point is in no 
wise peculiar. 

To sum up, then, the condition (8) is sufficient, but not necessary. 

The proof that it is sufficient lies in the fact that, since at least one 
derivative, as is not 0, it is possible to solve for t. Here 

a^=/(fo)» 0. 

Hence, by Chap. V, § 12, p. 136, 

t = <a(ar), 

where «(®o)=to and «(») is continuous, together with its first de¬ 
rivative, at the point a: = Xq. On substituting this value for t in the 
last two of the equations (1), these go over into the form (2), and 
hence we have a curve, q. e. d. 

3. The Direction Cosines and the Arc. To find the direction cosines 
of the tangent to a space curve at a point P: {xo, y#, Zo)> pass a secant 
through P and a neighboring point P': (xb -f- Ax, yo -J- Ay, -h As). 
The direction cosines of the secant are: 

ooBa'i 
Ax 

PP 
cos5* ascosy' 

M pp. 

^ A» 
ppj 

sad hence, for the tangmit, 

Gos 0 a> Urn =* lim == 



' OJaJDTODft 

witili wBulw fcarmuke f(»r ooa /3, oos y. Thus 

(10) eo8a = ^, cosj8 = ^, oo8y = —• 
ds da ds 

Here the tajagent is thought of as drawn in the direction in whidi 
a ia increasing. If it is drawn in the opposite direction, the minus 

•• 

Applying these results to (2), we get 

(14) & 
oo8a» - 1 

1 COS fi B (to - 1 cos y 3B - <2s 

V ^ diet (to* 

•l 

"3r« tM 

(i«) ~^dx. 
da? 

direets<m cosines in Case (c) are obtained in $ 4 
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4. S^ati(HU Tangent Lie»i and Vernal Plane. For tlw famgwnt 
line we have, in Case (a): 

(16) 

and in (b): 

(17) y - yo 

x-xg ^ y-yp _ z-zp. 

/'(<o) rw’ 

‘-'■"(I)/"—*>• 

The normal plane is given in (a) by 

(18) /'(«o)(® - ®o) yp) + \l>’(to)(z - zp) = 0; 

and in (6) by 

(19) x-xo+(^(y-yo)+f^(z-zg) = 0. 
sjAtJq \cIxJq 

On the other hand, the tangent line in Case (c) may be obtained 
most simply as the intersection of the tangent planes to the surfaces 
at the point in question: 

(20) 

These equations may be thrown into the equivalent form: 

(21) SB — Xp y — vo Z —Zp 

F, F. F. F, F, F, 

0 0 ft 

Hence we see that the direction cosines of the tangent line to the 
curve of intersection of the surfaces (3) are given at (*, y, z) by 
the proportion: 

(22) cos a: cos /3: 008 y ss 
F, F. F. F, F. F, 

The equation of the normal plane and the integral which represents 
the arc, s, can now be written down. 
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EXEROISeS 

Fiod the eqiiationa of the tangent line and the normal plane to 
each of the following space curves: 

I. The helix (4). 2. The curve (6). 

3. The curve: y* —2 mx, z* = m — 

4. The curve: 2a^ + 3y*4-z® = 9, z* = 3»®+-y®, 

at the point (1, — 1, 2). 

6. Find the angle that the tangent line in the preceding question 
makes with the axis of x. 

6. Compute the length of the arc of the helix: 

x = (ios$, y = sin6, = 

when it has made one complete turn around the cylinder. 

7. How steep is t^e helix in the preceding question ? 

8. Show that the condition that the surfaces (3) cut orthogonally 
is that 

(23) 
'• '' 8x dx dydy dz dz 

t 

9. What is the condition that the three surfaces; 

F(x, y, z)=0, 9 (x, y, z) = 0, 9 (*, y, z)=0, 

intersecting at the point (x^, y^, z^, be tangent to one and the sams 
line there ? 

10. The surfaces 

se* +1/* + 2’ »« 3, xyz = \, z = xy, 

all go through the point (1,1,1). Find the angles at which they 
intersect there. 

II. Obtain the condition that the surface (1), $ 1, and the curve 
(1)^ 12 meet at right angles. 

12. Find the direction angles of the curve 

y = «*, s-at* 

in the point (1,1,1). 

18. Find the direction angles of the curve 

wyt^l, y*™* 

in tile point (1, It 1). 
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14. Find dll the points in which the ourve 

I, * = <*, » = <*, z^t* 

meets the surface 
z^ = x + 2y — 2, 

and show that, when it meets the surface, it is tangent to it 

15. Show that the surfaces 

xyz = l, 
a? y*_**_l 

6* 

in general never cut orthogonally; but that, if 

—+ —— — =0, 
o’ 62 c* ’ 

they cut orthogonally along their whole line of intersection. 

16. When will the spheres 

sfi + i/‘ + z^ = l, (x — ay + (y — 6)2 + (* _ c)* =« 1 

cut orthogonally ? 

17. Two space curves have their equations written in the form (6). 
They intersect at a point P. Show that the angle c between them at 
P is given by the equation: 

cos « = a!ia4 + ylyi 4- zlsi = ^ > etc. 
as 

18. The ellipsoid: *2^.3^2^.2*2 = 9 and the sphere: 
+ y* + *’ = 6 intersect in the point (2,1,1). Find the angle be¬ 

tween their tangent planes at this point. 

19. Let a surface be given in the parametric form (9), § 1, and let 
a curve in the (u, 'u)-plane also be given in parametric form: 

M = x(0> '» = "(0- 
Show that, if x(<) and w(t) be substituted respectively for « and v in 
the functions /(m, v), <f>(u, v), ^(u, v), the new equations (9) repre¬ 
sent a space curve. 

20. Prove that all the space curves of the preceding question 
which pass through a given point of the surface are perpendicular to 
one and the same right line, and that the direction components of 
this line are 

gfy, g) ») y) 
?(«, »)’ 2(tt, v)’ 8(«, u) 

respectively, formed for this point 
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SI. If a surface is given in the parametric form (9), $ 1, show 
the differential of arc of a curve on the surface is given by the 
equation; 

da* 3s Edu^ + 2Fdudv+ Gdv*, 
vllAI'A 

dudv dadv dudv* 

In the above equation for da, what is the independent variable ? 

5. Osculating Plane. Let P: (x^,, y,,, ro) he an arbitrary point of 
a space curve, (1), § 2, and pass a plane 

(24) A(z — Xo)+ B(y - yo)+ 0{z — *o)= 0 

through P. Then the distance D of a neighboring point 

P': x=f(t(, + h), zs=i^(to + A) 

of the curve from this plane will be in general an infinitesimal of 

the first order with reference to PP' as principal infinitesimal. For 

ff -yo)+ 

where as, y, z are the coordinates of P'. Hence 

+ 2) CM -^r/C^o + —/(^)1+ + A)— <^((|i)1+ etc. 
V^* + J3* + (7* 

Apply Taylor’s Theorem with the Bemainder {Introduction to the 

Ccdculus, p. 430) to each bracket; 

/«o + h)-m - A/'(«o)+|V''('o + eh), o<e< 1, 

etc., 

and set Vj4* + G* = A. We thus obtain the following ezpres 
sion tor D: 

±D^ A[^/'(ta)-|- jS^'(g+ C-f (g]/A 

4- ~ '[Af'ifo 4- dh) + S^''(tQ 4- fifi) 4- C^"(tQ 4- djA)]/A. 

h A ’ 

Hence 
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and thk will not =e (m JL, E, <7 are ohosen at random, since /'((«), 
cannot all vanish simultaneously, unless perchance at an 

exceptional point. On the other hand, Pp’ sr As and h == At are in¬ 
finitesimals of the same order, since 

lim - A« = Vf (<o)* + + *'(toy * 0- 

Thus the above statement is proven. 
If, however. A, B, and C are so chosen that 

(26) Af'iU) + + Crik) = 0, 

then lim ± D/h = 0 and 

Now (26) is precisely the condition that the tangent line to (1), § 2, 
be perpendicular to the normal to the plane (24), and hence the tan¬ 
gent will lie in this plane; i.e. the plane (24) is here tangent to the 
curve, and D becomes now in general an infinitesimal of the second 
order. But if A, B, and G are furthermore subject to the restriction 
that 
(26) + B^"(«o) +Cr{k) = 0, 

then even lim ± D/h^ = 0 and D becomes an infinitesimal of still 
higher order; — of the third order, as is readily shown, if 

Af'ik) + -B^'"(<o) +C^'''{to) ^ 0. 

Equations (26) and (26) serve in general to define the ratios of the 
coefiicients A, B, C uniquely. The latter may, therefore, be elimi¬ 
nated from (24), (26), and (26), and thus we obtain the equation of 
the oacvlating plane: 

x — xo y — yo z — zo 

(27) r(k) <^'(to) rik) =0. 

f"(k) rik) rik) 
The osculating plane as thus defined is a tangent plane having 

contact of higher order than one of the tangent planes taken at ran¬ 
dom. There is in general only one osculating plane at a given point. 
But in the case of a straight line all tangent planes osculate. Again, 
if/"(t,) as «^"(to) ■» ^'(to) = Oj generally, all 
tangent planes osculate whenever all the two-rowed determinants 
formed &om the elements of the last two rows of (27) vanish. The 
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080[aiatmg plane cats tbe corre ixi genetai at tke p^t of taa^gen^; 
for the numerator of the expression for ± D changes sign when h 
passes through the value 0. 

}t is easy to make a simple model that will show the osculating 
plane approximately. Wind a piece of soft iron wire round a broom 
handle, thus making a helix, and then cut out an inch of the wire 
and lay it down on a table. The piece will look almost like a plane 
curve in the plane of the table, and the latter will be approximately 
the osculating plane. 

A second experiment that can be made with the first model de^ 
scribed — I mean, the longer wire—is, to hold it up and sight along 
the tangent at an arbitrary point P, thus projecting the wire on the 
wall. The projection will be seen to have a cusp at the point which 
corresponds to P,—and this, no matter what point Pbe chosen. 

The normal line to a space curve, drawn in the osculating plane, 
is called the principal normal. The centre of curvature lies on this 
lino, the radtue of curvature being obtained by projecting the curve 
orthogonally on the osculating plane and taking the radius of curva¬ 
ture of this projection. The line through P perpendicular to both 
the tangent and the principal normal is called the bi-normal. 

If a body move under the action of any forces, the vector accelera¬ 
tion of its centre of gravity always lies in the osculating plane of the 
path. 

When the equation of the curve is given in the form (2), § 2, the 
equation (27) becomes: 

EXERCISES 

1. Find the equation of the osculating plane of the curve (5), § 2, 
at tiie point tv. 

2. Find the eqiiation of the osculating plane of the curve of inter¬ 
section of the cylinders: 

a? -f- y* = d*, 4* d*, 

and interpret the result. 

Sugges^cm. Express x, y, z in terms of t, as for example: 

dm a cost, yjwdsint, » sen sin t. 
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5. Show tha>t tike centre of curvature of a helix lies on the radius 
of IJie cylinder produced. 

4. Shovr that the osculating plane of the curve 

y=> 3?, = 1 — y 

at the point (0, 0,1) has contact of higher order than the second. 

6. Prove that, in the case of a plane curve, the osculating plane 
is the plane of the curve. 

6. Show that, if the tangent to a space curve at a given point P 

be taken as the axis of x, the principal normal as the axis of y, and 
the bi-normal as the axis of 2, equation (27) reduces to * = 0. 

7. Work out the equation of the osculating plane when the curve 
is given by equations (3), § 2. 

8. Prove that, if the osculating plane to a space curve is parallel 
at every point to a fixed plane, the curve is a plane curve. 

9. Show that, if all the tangent planes to a curve at an arbitrary 
point osculate, i.e. if, no matter where the point P be taken on the 
curve, every tangent plane at P has contact of higher order than is 
in general the case, then the curve is a straight line. 

6. Oonfooal Quadrics and Orthogonal Systems.* 
ily of surfaces: 

(1) I 
a> -t- A h* + A, A 

1, 
Consider the fam- 

a > h > c > 0, 

where A is a parameter taking on different values. Each surface of 
the family is symmetric with regard to each of the coordinate planes. 
We may, therefore, confine ourselves to the first octant. 

If X > — c®, we have an ellipsoid, which for large positive values 
of A resembles a huge sphere. As A decreases, the surface contracts, 
and as X approaches — c’, the ellipsoid, whose equation can be 
thrown into the form: 

a* 
!C« 

a*-l-X h* + X/ 

flattens down toward the plane * = 0 as its limit,—more precisely, 
toward the surface of the ellipse 

a« - c* 
1, 2 = 0. 

*CS(. AnalvUe Oeometrv, p. 690. 



CAIiCULOS 

^ m dolngT; sweeps out the whole first ocimt jwt tBUMi as we 
shall presently show analytically. 

Let X oontinae to decrease. We then, get the family; 

(2) a? ■ y*_g* 
o* + ^ 6* + M -(c* + /t) 

— 6* < /I < — c*. 

These are hyperboloids of one nappe, opening out on the axis of s, 
and they rise from coincidence with the plane 2 = 0 for values of ^ 
just under — o’, sweep out the whole octant, and fiatten out again 
toward the plane y = 0 as their limit when ^ approaches — 6*. 

Finally, let X trace out the interval from — &* to — o*. We then 
get the hyperboloids of two nappes, cutting the axis of x: 

_t-?!-1 _a»<v<-6*. 

These start from coincidence with the plane y = 0 when is near 
— 6*, sweep out the octant, and approach the plane x = 0 as v 

approaches — a*. 

Thxobkm 1. Through each point of the first octant passes one sur¬ 

face of each fiimUy, and only one. 

Let P: (x, y, z), be an arbitrary point of this octant. Then x > 0, 
y > 0, z > 0. Hold X, y, z fast and consider the function of X: 

fW 
jr 

a* + X 6* + X c* + X 
-1. 

The function is continuous except when X =s — c*, — &*, or — o*. 
In the interval —c*<X< + oo we have * 

/(+«)“—1, lim/(X) = 4-oo. 
A*-«*+ 

He&oe the curve 
«=/(X) 

crosses the axis of abscissas at least once in this interval. 
On the other hand 

f'^xw — _y’’ _ ^ 0 
^ (a* + X)* ih* -f X)* (c» + X)» ■ 

Hence /(X) always increases as X decreases, and so Oxe curve cuts the 
axis only onoe in this interval. We see, therefore, that one and only 
(me ellipsoid passes through the point P. 

* By the notation Um F(x} is meant Uie limit when x approaches a from 

above. Sim&aily, lim F(p) means the limit when x approadtes a from below. 
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Similar reasoniag applied to the intervals (—&*, — and 
(—o!*, — 6®) shows that one and only one hyperbola of one nappe, 
and one and only one hyperbola of two nappes pass ^rough P. 

Thxobbh 2. The three quadrics through P irdersect at right angle* 

there. 

The condition that two surfaces intersect at right angles is given 
by (23), §4, Ex. 8. Applying this theorem to the surfaces (1) and 
(2), we wish to show that # 

2a! 2a! 2y 2y 2z 2z 

ct® “f“ X ct® fjL h® ^ X ft® ~f~ fi. c® "1“ X c® "1“ /I 

Now subtract equation (2) from equation (1): 

r z'^ 

^ ~ + + + /*)'*' + ApTTO 
Since fi — X.^0, this proves the theorem. 

The three systems of surfaces that we have here investigated are 
analogous to the three families of planes in Cartesian coordinates, to 
the spheres, planes, and cones in spherical polar coordinates, and to 
the planes, cylinders, and planes in cylindrical polar coordinates. 

. They form what is called an orthogonal system of surfaces, and enable 
us to assign to the points of the first octant the coordinates (X, /i, v), 
where 

— c*<X<+oo, —ft®<;i< — c», — a®<i-< — 6*. 

EXERCISES 

1. Let X =/(*, y, *), n = ^(*, y, *), v = i^(x, y, s) 

be the equations of three orthogonal families; the functions /, ^ 
having continuous first partial derivatives, and their Jacobian not 
vanishing. Show that 

dx dx By By Bz Bz ’ 

with two farther equations obtained by advancing the letters X, fi, r 

cyclically. 

2. Show that 
Bx Bx , By fa ^ A 
B\ By. Bx By. Bx By 

witii two further similar relations. 
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S. IM a eoxye be diavn thioogh. a point of tbe region, and its 
eqnatkms be 

»=mg(t), y=«A(0, 

where g, h, k have continuous first derivatiyes, not all zero. Then 

where 
H _ gae* ■ 8y*v 8z* 

* ax* gA* a\»’ 
^ a^ ^ ^ 

g/i* a^* g/**’ 

gl** Cy* gy* 
Zt is in this sense that the equation 

ds* = J?i dX* + jGTjdjtt* + JT'idy* 

ii to be understood. 

4. By making use of the theorem for the multiplication of deter 
minants in the form given in Chap. XII, § 2, Ex. 5, show that 

</* =* HiHiHf, 

§. Z*rove the relations: 

where J.^g(x, y, z) 
g(X, /t, y) 

ij- ax gx jT dijk dx 
^*gx“g^’ §^

1?
’ 

Il
l 

gy ax •“*^ a » gy g^ gy gy 

XT gx dz n- gft gz 
gz g(rt’ 

xj- gy g* 
'“‘g*~gy' 

Suggestion: Start with the equations 

ax a* ^ g|* gas gy g» ’ 

^g^ gg^^O 
gX Sx dfi dx gy dx ’ 

, ax g» dftdx^ dvdx ’ 

nnltiply them respectively by dz/dk, dy/dx, gs/gX, and add. 
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6. Show that 

“ 4^» “ 4» ±1\ Hx 

where Ai denotes the first differential operator, 

7. Froye that, if u be any function of x, y, z, continuous together 
with its first partial derivatives, then 

8u^ ^ ^ ^ J:. J:. JL 
ax* dy^ a** “ Hi ax* Hx dy? ^ ’ 

or A,« = A,X gy + A, V 

7. Curves on the Sphere, Cylinder, and Cone. In order to study 
the properties of curves drawn on the surface of a sphere, we intro¬ 
duce as coordinates of the points of the surface the longitude $ and 
the latitude (f>. Any curve can then be represented by the equation 

(1) Fi$,i,)=0. 
To determine the angle <o between this curve and a parallel of 

latitude, draw the meridians and the parallels of latitude through 
an arbitrary point F ; (fig, <^,) and a neighboring point H :($g + A&, 

^ + A^) of this curve. We thus obtain a small curvilinear rectangle, 
of which the arc PH is the diagonal. We wish to determine the 

“8^® w = Z MPP'. 

Now consider, beside the curvilinear right 
triangle MPP', a rectilinear right triangle 
whose hypotenuse is the chord PH and 
one of whose legs is the perpendicular 
PMi let fall from P on the meridian plane 
through P'. The angle 

s «' = Z MiPP’ 

oi this triangle evidently approaches &> as 
its limit when P' approaches P. We have: 

. Jf.P' 
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It is (dear that PMi differs from Plf = a cos bj an infinitMi- 

mal of higher order, and likewise JfjP' differs from MP' = a by 
an infinitesimal of higher order. Hence, by the theorem of the 
Introdu^on to the Calculua, p. 90, which says that the limit of the 
ratio of two infinitesimals is unchanged if either or both the infini¬ 
tesimals be replaced by others which are equivalent respectively to 
tiiese, we obtain: 

lim tan <o' = lim = lim aA<tt 

PMi a cos ’ 

tanw 

or, dropping the subscript: 

(2) tan <u = 

coa<f>o 

1 dtj, 

cos ij> d$ 

In order to obtain the differential of the arc of the curve (1) we 
write down the Pythagorean Theorem for the triangle PAfjP': 

PP'^ = PMl + M^> 

divide through by A^, and then let A^ approach 0 as its limit. Since 
the chord PP' differs from the arc As by an infinitesimal of higher 
order, we have: 

a* co8““ ^ a® lim ( 
p'^p \^0 J 

(D,s)® = o* cos* ^ + o* 

(3) ds* = a* [cos* i>de^ + d<^*]. 

Rhumb lines. A rhumb line or loxodrome is the path of a ship that 
sails without altering her course, t.e. a curve that cuts the meridians 
always at one and the same angle. If we denote the complement of 
this angle by «, then we have from (2) for the determination of the 
carve: 

dth _ ddtanw. 
cos 

(4) dtan«- f 
J iSOB<t» 

log tan^^ + 

This is the equation of an eqoiangalar spiral on the sphere, which 
winds round each of the poles an infinite number of times. 
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EXERCISES 

1. Show tihst the total length of a rhnmb line on the sphere is 
finite. 

2. The Cartesian coordinates of a point on the surface of a sphere 
are given by the equations : 

x=: a cos ^ cos 6, cos sin 0, z = a sin 4>. 

Deduce (3) from these relations and the equation: 

d«* = dx^ 4- dy^ + dz*. 

3. Taking as the coordinates of a point on the surface of a cone 
(p, 6), where p is the distance from the vertex and 6 is the longitude, 
show that 

tan <0 = -—^- (6) pd6 sin a 

4. Obtain the equation and the length of a rhumb line on the cone. 

6. The preceding two questions for a cylinder. 

Ans. tan «> = ——, ds® = a‘^dff^ + dz\ where r = a 
add 

is the equation of the cylinder in cylindrical coordinates. 

8. Heroator's Chart. In mapping the earth on a sheet of paper it 
is not possible to preserve the shapes of the countries and the islands, 
the lakes and the peninsulas represented. Some distortion is in¬ 
evitable, and the problem of cartography is to render its disturbing 
effect as slight as possible. This demand will be met satisfactorily 
if we can make the angle at which two curves intersect on the earth’s 
surface go over into the same angle on the map. Por then a small 
triangle on the surface of the earth, made by arcs of great circles, 
will appear in the map as a small curvilinear triangle having the 
same angles and almost straight sides, and so it will look very simi¬ 
lar to the original triangle. What is true of triangles is true of 
other small figures, and thus we should get a map in which Cuba 
will look like Cuba and Iceland like Iceland, though the scale for 
Cuba and the scale for Iceland may be quite different. 

A map meeting the above requirement may be made as follows. 
Begarding the earth as a perfect sphere, construct a cylinder tan¬ 
gent to the earth along the equator. Then the meridians shall go 
over into the elements of the cylinder and the parallels of latitude 
into its oireular cross-sections as follows: Let P he an arbitrary 
point on the earth, Q, its image on the cylinder. 
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(a) Q shall hare titie same longitude, d, as P. 

(fr) To the latitude ^ of P shall correspond a distance s of Q 
from the equator such that the angle u which an arbitrary curve 0 
through P makes with the parallel of latitude through P, and the 
angle «ii which the image Ci of C makes with the circular section 
of the cylinder through Q, shall be the same. Xow from (2) 

tauc 
dOoostf} 

On the other hand, by § 7, Ex. 6, 

dz tan 10^ — 

Hence we get 

^ 
ddcos^ add 

add 

or dx ■ adjt 

cos^’ 

the constant of integration vanishing because z == 0 corresponds to 
5^ — 0. Thus, if a = 1, a point in latitude 60° K. goes over into a 
point distant 1.32 units from the equator. 

The cylinder can now be cut along an element, rolled out on a 
plane, and the map so obtained reduced to the desired scale. 

This map is known as Mercator’s Chart.* It has the property 
that the meridians and the parallels of latitude go over into two 
orthogonal families of parallel straight lines. Furthermore, a 
rhumb line on the earth is represented by a straight line on the 
map. Hence, in order to determine the course of a ship which is 
to sail from one point to another without altering her course, it is 
only necessary to lay down a straightedge on the map so that it 
will go through the two points, and read off the angle it makes with 
the parallels of latitude. 

We call attention to the fact that the above map cannot be ob¬ 
tained by projecting the points of the sphere on the cylinder along 
a bundle of rays from the centre. It is true that the meridians 
would go over into a family of parallel straight lines as before, and 
^e same is true of the par^lels of latitude, but angles would not in 
general be preserved. 

• 6. Kremer, i&e Latinized form of whose name was Mercator, oompletod a 
nuyp at the world on the plan here wA forth in IMO. 
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EXERCISES 

1. Turn to an atlas and test tLe Mercator’s charts there found 

by actual measurement and computation. 

2. Show that a curve on the sphere, which cuts the forty-£fth 

parallel of latitude at an angle of 45°, goes over by the central pro¬ 

jection mentioned above into a curve which cuts the image of that 

parallel of latitude at an angle of 64° 44'. 



CHAPTER VII 

TAYLOR’S THEOREU. MAXIMA AND MINIMA. 
LAGRANGE’S MULTIPLIERS 

1. The Law of the Mean. Let f{x,y) be a continuous function 

of the two independent variables x and y, having continuous first 

partial derivatives throughout a region S. Let (aso,?/#) be any point 

wittiin S, and let h, & be two arbitrary constants. Consider 

/(*o + h, yo + *)• 
We have obtained an expression for this value in terms of /(a!o,yo) 

and the first partial derivatives of f{x, y); cf. Chap. V, § 7. The 

method consisted in forming the function 

it(t)=f{x<, + th,y^ + tk), OgtSl. 
T'or 

’ *(1) =/(a:o + A, yo + *), *(0) =/(xo, yo), 

and the law of the Mean for functions of a single variable, applied 

to *(t), gave: 
4>(1) = 4>(0) + 1 • 0 < ^ < 1. 

Hence the desired formula resulted, namely: 

/(xo + ^0 + A) = 

Vo) + Vo + 4- yo + 
f 

where 0 < < 1. This is the Law of the Mean for functions of 

two independent variables. It has been tacitly assumed that the 

restrictions on the function hold at least throughout the region 

SB » + tft, y = ya + »fc, 0 ^ ^ 1, 0 g » g 1, 

a and t being independent of each other. 

The extension to functions of n > 2 variables is obvious. 

Si. Taylor’s Thfloreia. We obtain Taylor’s Theorem with the Re¬ 

mainder for functions of several variables if we write the corre¬ 

sponding theorem for ^(t), IrUroduction to the Oalcfidua, p. 430: 

*(!)= *(0)-i-*'(0)4-4--.*<’’>(0)4-,—; 
n\ (w -f" 1)1 

and then substitute for * and its derivatives their values. Thus 

whmi n «■ 1 we get 
172 
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(1) /(^ + A) yo+1/0)+ ^/i(®p» yo)4- */»(*»» y®) 

+ KAVu(^; F)+2Ai:/«(X, T)+Wzzi^. T)2, 

where X = *0 + T=y() +6k, and 0 < ^ < 1. 
The student should write out the formula for the next case, n=a2. 

The general term, 4>'*>(0)/n!, can be expressed symbolically as 

-,[hf + kfYf(x,y),,^ 
n!|_ ox dyj 

and the remainder as 

(n + l)!(_ i^x pyj *=iii)+« 

The extension to functions of « > 2 variables is immediate. 
If the remainder converges toward zero when n becomes infinite, 

we obtain an infinite aeries whose terms are homogeneous polyno¬ 
mials and which converges toward the value of the function. If, 
furthermore, the series whose terms consist of the monomials that 
make up the terms of the latter series converges for all values of k 

and A: within certain limits: \h\<.H, |A;|<X', we say that the 
function can be developed into a power series in h—<c — Xf) and 

k = y-Vo-. 
(2) f(x,y)=^c,„,{x-Xo)”{y-yo)’‘, 

or that it can be developed by Taylor^s Theorem. A series of the form 
(2) is often called a Taylor’s Series. But it is not in general feasible 
to give a direct proof that the remainder converges toward zero, and 
so other methods of analysis have to be employed to establish a 
Taylor’s development. 

EXERCISE 

Assuming that the function e’ cos y can be developed by Taylor’s 
Theorem about the point Xq =s yo = 0, show that 

e’cosy = 1 + * +^(** — y’) + 

3. Maxima and Minima. The function f{x,y) will have a 
maximum at the point (®o, yo) if the tangent plane of the surface 

« =fix, y) 

at (a:o,yo) is parallel to the (*, y)-plane and the surface lies below this 
plane at all other points of the neighborhood of (aso* Vo# **0)* Hence 

we see that at (a\), yo) 
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<1) 0. 

A similar statement holds for a minimum.* 
The neoessaiy condition contained in (1) can be extended at cmce 

to functions of n > 2 vanables. For, if anj one of the first partial 
deriTatives, as dufdx, for example, were :^0 at (ai)> yo> *o> ••■)> 
the function f{x, y^, Za, •••), ■which is a function of x alone, would 
be increasing as x passes through the ■ralue x^, or else it would be 
decreasing, according to the sign of du/dx, and so in neither case 
could/(x, y, z, •■•) have a maximum or a minimum there. 

The conditions (1) are frequentlysufBoient, together with other 
information, to determine a maximum or a minimum. 

Example 1. Given three particles of masses mj, situated 
at the points (Xi,yi), (x,,yi), {xs,y^. To find the point about which 
the moment of inertia of these particles will be a minimum. 

Here it is clear that for all distant points of the plane the mo¬ 
ment of inertia is large, becoming infinite in the infinite region of 
the plane, furthermore, the moment of inertia, J, is a positive 
continuous function. Hence the surface u = J, or 

w == TOi[(® - ®i)* + (y - yO®] +»»,[(» - x^y -f (y - y*)’] 

+ m,[(a; - a^)* -|- (y - ys)*] 

must have at least one minimum, and at such a point 

— =a 2 [m, (a; - iCi) + (» - ST,) + WH (x - a^)] = 0, 

du 
— = 2[mi(y- yi) + ”hOf-yi) + »»*(y - ya)] = 0. 

But these equations determine the centre of gravity of the particles 
and are satisfied by no other point. Hence the centre of gravity is 
the point about which the moment of inertia is least. 

The result is in accordance with the general theorem of the /ntro- 
duetion to the Calculua, p. 331, and it holds for any system of parti¬ 
cles whatever. 

• A jx>int (xoiVo) at which equations (1) alone are satisfied — apart from 
any further condition—may be called a point at which the function is stotion- 
aty, tinee the change in value which the function experlencea when (r,y) 
aoTW to a point (a» + h, Vt + h} near by to an infinitesimal of higher order 
tium the distance between these p^nto. 
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Auxiliary Vairiable». As in the case of functions of a single varia¬ 

ble, so here it frequently happens that it is best to express the 
quantity to be made a maximum or a minimum in terms of more 
variables than are necesshiy, one or more relations existing between 
these variables. The student must, therefore, in all cases begin by 
considering how many independent variables there are, and then write 
down all the relations between the letters that enter; and he must 
make up his mind as to what letters he will take as independent 
variables before he begins to differentiate. 

Example 2. What is the volume of the greatest rectangular paral¬ 
lelepiped that can be inscribed in the ellipsoid: 

(2) 
a» b^ 

We assume that the faces are to be parallel to the coordinate 
planes and thus obtain for the volume: 

V=S xyz. 

But X, y, z cannot all be chosen at pleasure. They are connected by 
the relation (2). So the number of independent variables is here 
two, and we may take them as x and y. We have, then: 

From (2) we obtain: 

/... ^ c^y 

dx 0*2’ dy b^z 

Now, neither x =: 0 nor y = 0 can lead to a solution of the problem, 
and hence it follows from (3) and (4) that 

or 

2 — 
aH 

= 0, 
^ _ y* _ 

b^z 
0, 

Thus the parallelepiped whose vertices lie at the intersections 
of these lines with the ellipsoid, i.e. on the d^onals of the cir¬ 
cumscribed parallelepiped x = ± a, y = ±b, 2 = ± c, is the one 
required,* and its volume is 

7’= IV3 abc. 

• The reasoning, given at length, is as follows, 
function of z and y at all points within the eUipse 

a« 6* = 1, 

y is a continuous positive 
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EXERCISES 

1. Kequired t^e parallelepiped of given volume and minimum 
SUrfsos. Ant. A oube. 

2. Bequired the parallelepiped of given surface and maximum 
volume. Ant. A cube. 

3. A tank in the form of a rectangular parallelepiped, open at the 
top, is to be built, and it is to hold a given amount of water. Find 
what proportions it should have, in order that the cost of lining it 
may be as small as possible. How many independent variables are 
there in this problem ? 

Ans. Length and breadth each double the depth. 

4. Find the shortest distance between the lines 

j'y = 2x, r2/ = 3a5 + 7 
[z = 5 X, [ * = 

6. Show witibout using the calculus that the function 

x*-i-y* + ix —32 y —7 

has a minimum. 

Suggestion. Use polar coordinates. 

6. Find the minimum in the preceding problem. 

7. A huddred tenement houses of given cubical content are to 
be built in a factory town. They are to have a rectangular ground 
plan and a gable roof. Find the dimensions for which the area of 
walls and roof will be least.* 

8. A torpedo in the form of a cylinder with equal conical ends 
is to bo made out of boiler plates and is just to float when loaded. 
The displacement of the torpedo being given, what must be its pro¬ 
portions, that it may carry the greatest weight of dynamite ? 

Ant. The length of the torpedo must be three times the length 
of the cylindrical portion, and the diameter must be V5 times the 
length of the cylindilcal portion. 

for which X > 0, y> 0, and it vanishes on the boundary of this region. Hence 
it must have at least one maximum inside. But we find only one point, namely 
xsa/VS, y=:b/V3, at which Fean posaiblr be at a maximum. Hence, etc. 

* The problem is identical with that tu finding the best shape for a wall- 
tent. 
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9, find tlie point so situated &at the sum of its distances from 

the three rertioes of an acute^ingled triangle is a minimum. 

Ans. The lines joining the point with the vertices make angles 

of 120* with one another.* 

10. Find the most economical dimensions for a powder house of 

given cubical content, if it is built in the form of a cylinder and the 

roof is a cone. 

4. Test by the Berivatives of the Second Order. We proceed to 
deduce a sufficient condition for a relative maximum or minimum 

in terms of the derivatives of the second order. Suppose the neces¬ 

sary conditions, § 3, (1) are fulfilled at (xg, y^). Then from § 2, (1) 
we get: 

(1) /C^ + h, Vo+ + 2 Bhk -f- OT), 

where A =fii(xo+Oh, yg + Ok), B=fii(xg +eh,.yg +Ok), 

C" =fii(.Xg -j- Oh, yg Ok), 

and for a minimum the difference (1) must be positive for all points 

x=Xg + h, y = yQ + k near {xg, yg) except for this one point, where 

it vanishes. 

Definite Quadratic Forms. A homogeneous polynomial of the sec¬ 

ond degree in any number of variables is called a quadratic /orm,t 

and is said to be definite if it vanishes only when all the variables 

vanish j otherwise it is said to be indefinite. Thus 

2A2-f-3fc2-f 51* 

are examples of definite quadratic forms in two and tlyee variables 

respectively; 

h\ 3h^ + 7hk + 2k'‘=(3h + k)ih+2k) 

are indefinite. A definite quadratic form never changes sign; an 

mdefinite one may. 

Thbokem. In order that 

U=Ahi + 2Bhk + Ck^, 

* For a complete discussion of the problem for any triangle see Goursat- 
Hedrick, Mathematical Analysis, vol. 1, § 62. 

t For some purposes it is desirable to define an algebraic form merely as a 
polynomial. But we are concerned here only with homogeneous polynomial. 
Moreover, we exclude the case that all the coefficients vanish. 
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tehetv A, S, G are independent cf h and k,be a d^nUe form, U it 

neeetaary and sufficient that 

f8) B>-AC<0. 

That this condition is sufficient is at once evident. For, if it is 
fulfilled, surely neither A nor C can vanish, and we can write: 

Cr= A [(^A + BkY + {AG - S«)jfc*]. 

Hence U can vanish only when 

Ah-k-Bk=^0 and A: = 0, 

i.e. only when A a A; =s 0, q. e. d. 
We leave the proof that the condition is necessary to the student. 
When the condition (2) is fulfilled, A and G necessarily have the 

same sign, and this is the sign of {7. 

GoaoUiAitv. If A, B, G d^nd on h and k in any manner what¬ 

ever, and if, for a pair of values (A, k) not both zero, the condition (2) 
is fulfided, then for these values U has the same sign as A and C. 

Application to Maxima and Minima. 

(1), let us suppose that 
Returning now to equations 

(8) —<0 
dy J dx* 8y^ 

at (xo, Po) &nd that these derivatives are continuous in the vicinity 
of this point. Then the relation (3) will hold for all points near 

(®b»yo) and furthermore, for such points, both ^ and ■— will 

preserve the -common sign they have at (x^, y^). Hence the right- 
hand side of (1) will vanish only at (a^,, po), and at other points in 
the neighborhood will have the sign of these latter derivatives. 
We are ilius led to the following 

SCFFICIBKT CoSTDITIOir FOB X HsLXTim MaXXMTTM OB Hlin- 

KUM. If at the point (xg, j/g) 

(а) 

(б) 

dy 

( Y d^u Q. 
\dxdy) fix* fiy* ’ 

and If the derivativea of the second order are continuous near (s%, 
&«n u will have a relative maximum at (ot, po) if 
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(Cl) 0, 
and a relative minimum there if 

(c*) 0. 

Conditions (6) and (c) are not necessary, bat only sufficient, u may 
have a maximum or a minimum even when the sign of inequality in 
(6) is replaced by the sign of equality. But if, in (6), the sign of in¬ 
equality be reversed, u has neither a maximum nor a minimum. 

When / depends on n > 2 variables, the method of procedure is 
similar. First, the algebraic theorem about quadratic forms has to 
be generalized. Thus for three variables, 

(4) C7’= Oija^ -H + 2 + 2 OuXtXi + 2 aaXjXj 

and a necessary and sufficient condition that be a positive definite 
quadratic form is that 

(5) 
®11 ®is 

a-ji Ojs 
>0, 

Oil ®1» 

Oil Oat 

Ojl Ojj Oji 

>0, 

where o.y = Oy,. This form of statement suggests the generalization 
for n = n. 

If CT is to be a negative definite quadratic form, the first, third, 
fifth, etc. inequality signs in (5) must be reversed. 

EXERCISES 

1. Show that the surface 
* = ay 

has neither a maximum nor a minimum at the origin. 

S. Show that the function 

-i-3a;’— 2a!y + 6y* — 4y* 

has a relative minimum at the origin. 

8. Test the function 

2*’-l-2ay-f-6y’4-2» —2y-|-l 

for tno-TiTna. and minima. 

4. Determine the maxima and minima of the surfaoe 

** + 2y’ + 3z’—2ay — 2y*=«2. 
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5. ZAgmigv’a Xsltipliara. Let it be required to find l^e eoor 

diticm that tiie function 

<t) ' u- F{xy y, z) 

may be stationary, where x, y, z are connected by a relation 

(2) ^{x,y,z)=0. 

The condition is represented by equations (1) of § 3, extended to 

this more general case. 

If equation (2) can be solved for z, then, on substitutiug this value 

for z in (1), we have « expressed as a function of the two inde¬ 

pendent variables x and y, and hence equations (1) of §3 become 

(3) £“^* + ^.£=0, + 

On the other hand, we have for the determination of dz/dx and 
dz/dy from (2) the equations 

(4) + + 

From the pair of equations consisting of the first equation in 

(3) and (4) dz/dx can be eliminated: 

(5) 
Fx 

<*>1 

Fz 
.0; 

and similarly, from the pair consisting of the second equation, 

dzfdy can be elimioated: 
Fz F, 

* 

Equations (6) and (6), combined with (2), are three equations for 

determining the values of the three unknowns x, y, and z, for which 

equations (3) and (4) hold simultaneously, and hence for which 

equations (1) of § 3 are true. 

Li^range observed that the problem just solved is equivalent to 

the following problem. Let u be set equal to the function f + : 

(7) w = F{x, y, z) + X4- {x, y, z), 

where X is a constant, to which we will later assign a suitable value. 

Ckmsider tt as a function now of the three independent variables, x, 

y, and z,* and write down the conditions corresponding to (1) of 

* This step is wholly arbitrary. The jnotif lies in the purely algebraio Situ- 
Bticok which Kcises whea we do this thing. 
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§ 3 for this function; thus we have 

(8) /"i + A$i = 0, J’, + A*s = 0, i?i + X«, = 0. 

If these equations are to hold simultaneously, then it follows from 

the third of them that X must have the value: 

(9) X 3. 

Hence, on substituting this value of X in each of the first two of the 

equations (8) we are led to equations (6) and (6). 

Thus we obtain by Lagrange’s method these two pivotal equations, 

and no more; for equation (9) imposes no condition on as, y, z, but 

serves merely to determine X. Coming back, now, to the original 

problem of making u as given by (1) under the restriction (2) a max¬ 

imum or a minimum, we add to the two equations just mentioned 

equation (2), and thus have the same system of three equations 

which we obtained by the first method. 

'rtie method can be extended at once to the case of a function u 

of n variables, scj, x„, which are connected by a single relation: 

'10) u=Fixi, ..., »„), 4>(a:i, -, a5,)=9. 

The last equation can equally well be written in the form 

*»)= O, 
where C is any constant. — Cf. further § 6. * 

Example. (See also p. 626.) Let 

F{x, y, z) = AxP- -H By^ + + 2 Dyz+ 2 Ezx+ 2 Fxy 

be a positive definite quadratic form, and let », y, 2 be restricted 

by the relation 

#(*, y, z) = x^ + y^ z^ ^ a*. 

Equations (8) now take on the form 

(11) 

Ax Jfy -f- X* -I- X» = 0, 

Fx By + Dz A Xy = 0, 

Ex DyCz Xz = 0. 

A necessary condition that these 

is that 
lA-l-X F 

F B + X 

E D 

equations hold simultaneously 

E 

D = 0. 
(J X 

(12) 



CALCULUS .1^ 

If, in particaJar, 

(13) FCx, y, »)=Aa? + B^ + (7**, 

tike eqoatioa (12) reduces to 

(^ + X)(B + X)(C + X) = 0, 

and the roots, which are all real, are —A, —B, and — C. 

In the general case, equation (12) has at least one real root, and 

no root of (12) is 0. For, the yanishing of the determinant arising 

bj setting X = 0 in (12) would mean that y, z) could vanish for 

values of x, y, z not all 0. 

Consider the function F(x,y,z) in the points of the sphere 

9 = a*. Since F(x, y, z) is oontinuouB, it has a maximum value on 

the sphere, and also a minimum value.* Hence two of the three 

roots of (12) are real and distinct, and thus all three are real. 

Let the coordinate axes be so rotated that F attains its maximum 

value in the point (0, 0, 0, where ( > 0. From (11) it appears that 

2) = 0, B = 0, Xss — C. Thus 

F(x, y,z) = Ax^-i-2Fxy + By^ + Cz\ C>0. 

If F¥=0, a suitable rotation of the axes about the axis of z will 

remove the term in ay, and thus the form (13) is attained, where A, 

B, C are all positive. 

EXERCISES 

1. Find the values of (z, y, z) for which the function 

M = xyz 

is stationary, if ® + y + » = 1. 

S. Work Example 2 of § 3 by means of Lagrange’s multipliers. 

3. Examine the Exercises at the close of §3 and determine to 

which of these the method of Lagrange’s multipliers is particularly 

well adapted. 

4. Show that the method of Lagrange’s multipliers is valid in the 

case of functions of a single variable, given in the form: 

u F{x, y) *(*, y)ai 0. 

*Zf, in particulsr, these Tslues are the same, {.e. if F(z, y, z) is constant on 
the s|there, then F(z, y, s) s £’4(z, y, s) (£= const.) and all three roots (d 
(IS) are teal and equal. 
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Tke oo&ditioa liere takes oq the form: 

6. Show that, if 

M = if’(a:i, and *0= + •••+*i»a* 

where i and j, independently of each other, run through the values 

from 1 to n, and a,,. = Uy,, equations (8) assume the form 

(14) 

®ii^ + ••• + + Ais, = 0, 
H-+ + Aai, = 0, 

Oni®! + ■• • 4- «„*« + X*. = 0. 

Hence X must be a root of the equation 

<*11 + X <*ij . • • . <*1* 

<*»i <*si + X • . . <*jb ^ Q 

<*»1 <*n2 • • • <*»« + X 

6. Show that if, in the preceding question, the function u has a 

maximum or a minimum in the point (0, 0, •*•, 0, xl), where xl > 0, 

then F contains only a simple term involving x^, namely o„,ai. 

7. A “ rotation ” of space of m dimensions is given by the formula 

x'„ = a„^xx H-+ ft = 1, •••, m. 

where = and a„ = a,*, 

provided the determinant of the transformation (which ®= ± 1) has 

the value +1. 

Show that, by a succession of rotations (which can, of course, be 

compounded into a single rotation) the form F of Question 6 can be 

carried into a form in which only the terms in are present. 

8. Find the points of the circle 

** 4- y* + »* = 1, oaj + &y 4- <» = 0, 

in which the function 

w = A** + By^ + Cs* -h 2 Dyz + 2Ezx + 2 Fxy 

attains its greatest and its least values. Treat first the cose: 

D = X = 2^ ax 0. 
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0. CoBtinaatioiL ieTaral Aiudlhtrjr Xquwtunu. The' method of 

Lagrange’s mtiltipliers applies to the general case that the yariables 

are connected bj an arbitrary number of auxiliary equations. For 

example, let 
(1) u = F(x, y, z, t), 

(2) «(*, y, z, t) = 0, *(x, y, z, t) = 0. 

If equations (2) can be solved for z and t, then, on substituting 

these values in (1), w becomes a function of a and y. Equations (1) 

of § 3 now take on the form 

(3) p. + y.| + f.,| = 0, F. + F.| + F,|-0. 

The derivatives dz/dx, etc. are determined by the equations: 

(4) + + ♦i + 5- + *4 ^ = 0; 
% Sy 

’*'* + '*'s|5+4'4|^ = 0. 
dy dy 

Thus we find the conditions 

Fi F, Ft F, F, Ft 

(6) *1 4^ K4 =0, <^2 ®4 — 0- 

*1 ♦» *4 4-2 % '*'4 

The four equations (2) and (6) determine the four unknowns 

X, y, z, t, and for this system of values equations (1) of § 3 hold. 

Lagrange’s method consists in forming the function 

where X and n are constants, to which shall later be assigned suitable 

values, and where « is considered as a function of the four indepen¬ 

dent variables, {x, y, z, t). It is to this function that condition (1) of 

§ 3 is now applied, and thereby result the equations: 

(7) Fi X$i fi.'i’i = 0, -b X^j -b = 0, Fi -J- X#* -f- /t’i's = 0, 

Ft + X4>4 + =- 0. 

From the last two of these X and are to be determined, and these 

values are then substituted in the first two. The two equations thus 

obtained are precisfely the equations (6). 

The extension of the method to a function of n variables, 

u^F(xi, 
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the Tamhles being ooimected by p equations: 

0, • • • , ♦W(a!i, —, ajJ-O, 

is now obvious. The relations which correspond to (6) are: 

••• F^ 

(8) = 0, II 

7. Conclusion; Critique. In the first case considered, § 5, it was 

tacitly assumed that the functions F{x, y, z) and ^(x, y, z) are con¬ 

tinuous, together with their first partial derivatives, in the neighbor¬ 

hood of a point (Xo, yo, Zo) whose coordinates satisfy equations (2), 

(6), and (6). But this is not enough. The equation (2) must deter¬ 

mine such a function z of a; and y that equations (3) can have a meaning. 

This will surely be the case if ^3(3^, yo, Zo)=^ 0. Moreover, this is 

also precisely the condition which we need in Lagrange’s method, in 

order that equation (9) may have a meaning. It is, of course, im¬ 

material whether we solve equation (2) for z or for one of the other 

letters. We see, then, that Lagrange’s method will apply if at leatt 

one of the numbers yoi *o)> & = !, 2, 3, is different from Q. 

In § 6 the situation is similar. It is enough, *in addition to the 

continuity of the functions F, $, 'i' (together with that of their first 

partial derivatives) in the neighborhood of a point whose coordinates 

satisfy equations (2) and (6), that at least one of the two-rowed 

determinants 

% ’ 

where t and^ are two distinct numbers chosen from the set 1, 2, 3, 

be different from zero. 

The extension to the general case is now obvious. At least one 

p-rowed determinant from the matrix made up of the last p rows of 

the determinant (8) must be different from zero; — at least, this is 

sufficient, in order that u be stationary. The student must have a 

firm hold on the theory of Linear Dependence; cf. Bdcher, Algebra, 

Chaps. 3, 4. 



CHAPTER VIII 

EITTELOPES 

1. EnTelope of a Family of Correi. Consider a family of circles, 

of equal radii, whose centres all lie on a right line. The family is 

represented by the equation 

(1) + = 
where the parameter a runs through all values. The lines 

(2) jf = 1 and y = — 1 

aM toadied by all the curves of this family. 

Again, let a rod slide with one end on the floor 

and the other touching a vertical wall, the rod always 

remaining in the same vertical plane. It is clear that 

the rod in its successive positions is always tangent 

to a certain curve. This curve, like the lines (2) in 

Fia. 42 preceding example, is called the envdope of the 

family of curves. 

Turning now to tdie general case, we see that the family of curves 

(3) f{x, y, a) =0 

may have one or more curves to which, as a varies, the successive 

members of the family are tangent. When this is so, two curves 

of the &mily corresponding to values of a differing but slightly 

from each other: 

(4) /(®, y, «o) = 0, f(p, y, Of, + Aa) =. 0, 

will usually intersect near the points of contact of these curves with 

the envelope, as is illustrated in the above examples. So if we 

determine the limiting position of this point P of intersection of 

the curves (4), we shall obtain a point of the envelope. We will 

first outline the method and show its application, and then come 

back to a study of the details in § 4. 

From analytio geometry * we know that, if w a 0 and v aa 0 are 

* AndyMe QeomOry, p.' 186. 
186 
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the equations of tiro curres, then u + ho s 0 (where h is a constant) 

represents a carve which passes through all the points of intersec¬ 

tion of the given curves. Applying this principle to the curves (4), 

we see that a third curve through P is given by the equation 

(5) /(*, y, «« -f Aa) - f{x, y, a^) = 0. 

The left-hand side has the value ^afJix, y, oo + ^ Aa) (Law of 

the Mean, Chap. V, § 2). Hence the coordinates of P satisfy the 

equation 

(6) /*(*, y, Oo -f- Aa) = 0. 

Now let Aa approach 0 as its limit. The point P approaches the 

point of tangency of the first curve (4) with the envelope, and the 

left-hand side of (6) approaches /.(a:, y, oo). Hence the equation 

/>(»;, y. «o)= 0 

represents a second curve passing through the point of tangency of 

the first curve (4) with the envelope. Thus we obtain the 

Theokem. T%e envelope of the family of curves 

f{x, y, a)=0 

IS given by the pair of equations , 

(7) /(*, y, a) = 0, 1^ =/.(x, y, a) = 0. 

Example 1. 

we get: 

Applying formulas (7) to the family of circles (1) 

|£=-2(.-.)=o. 

Equations (7) now tell us that the envelope is given by the pair of 

equations 
(» — «)’ -f- y* = 1, X — a = 0. 

These equations are equivalent to the single equation obtained by 

eliminating a: 

y* ss 1, or y = 1 and y = — 1. 

The analytic result is seen to correspond with the geometric evi¬ 

dence. 

Example 2. To find the envelope of the family of ellipses whose 

axes coincide and whose areas are constant. 

Here, 
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(«) 

(ft) 

a* ¥ ^ 

irob = k. 

It is more oonvenient to retain both parameters, rather than to 

eliminate, but we must be careful to remember that only one is 

independent. If we choose a as that one, a as a, 

and differentiate with respect to a, we have : 

of V da \ da) 

Fio. 43 

and hence 

(<=) 
of b^‘ 

Between (a), (6), and (c) we can eliminate a and b and thus get a 

single equation in x and y, which will be the equation of the en¬ 

velope. To do this, solve (a) and (c) for o® and 6*, thus getting 

a* = 2a^, i)* = 2y*; 

and then substitute the values of a and 6 from these equations in (b): 

± 2wxy = k, 

This equation represents a pair of equal equilateral hyperbolas on 

the axes as asymptotes. , 

The equations 

x = ± a/V2, y = ± b/-\f2, 

combined with (6), give the coordinates of the points of the en¬ 

velope in which the particular ellipse corresponding to that pair of 

values of a and b is tangent to it. This remark applies generally 

whenever the coordinates x and y of a point of the envelope are 

obtained as functions of a. 

EXERCISES 

1. Bind the envelope of the family of straight lines 

2ay = 2x -j- a*. 

I>iavr..a number of the lines. 

same question for the family 

a; cos «-)- y sin a a 2. 

B. The legs of a right triangle lie along two fixed lines, and the 
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hypotenuse varies so that tiie area of the triangle is always tiiie 

same. Find the envelope of the hypotenuse. 

Draw an accurate figure showing a good number of the triangles 

Take 1 cm. as the unit of length and 2 sq. cm. as the area of the 

triangles. 

4. Circles are drawn on the chords of a parabola which are per¬ 

pendicular to the axis, as diameters. Show that the envelope is an 

equal parabola. 

Make an accurate drawing of a good number of circles for the 

parabola y^ — x, 1 cm. being taken as the unit of length. 

5. Show that the envelope of all ellipses having coincident axes, 

the distance between two consecutive vertices of any ellipse being 

the same for all the ellipses, is a square. 

6. What is the envelope of all the chords of a circle which are of 

a given length ? 

7. Find the envelope of straight lines drawn perpendicular to 

the normals of a parabola at the points where they cut the axis. 

8. Find the envelope of a circle which is always tangent to the 

axis of X and always has its centre on the parabola y = as*. 

9. Show that the envelope of the lines in the second example of 

§ 1 is an arc of a four-cusped hypocycloid. 

10. A straight line moves in such a way that the sum of its inter¬ 

cepts on two rectangular axes is constant. Find its envelope. Draw 

an accurate figure. 

Observe that the equation V* + Vy = represents a parabola. 

11. Find the envelope of the family of circles which pass through 

the origin and have their centres on the hyperbola xy =1. 

Ana. The lemniscate (»* -|- y®)® = 16 xy. 

12. The streams of water in a fountain issue from the nozzle, 

which is small, in all directions, but with the same velocity, w#. 

Show that, if the nozzle be regarded as a point, the form of the 

fountain is a paraboloid of revolution. 

13. Circles are drawn on those chords of an ellipse as diameter 

which are parallel to an axis of the ellipse. Show that the envelope 

is part of an ellipse, one axis of which is equal to the axis men¬ 

tioned, the other axis being equal to the diagonal of the rectangle 

which circumscribes the ellipse. 

14. Circles are drawn on chords of the hyperbola xy ml as diam 

eters. Find their envelope. 
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3. laval^ TuigeBtf ud Vonauls. Any carve nay be re> 

garded as the envelope of its tangents. Thus the equation of idie 

taogfflit to the parabola 

(1) y* SB 2 true 

at the point (xo, yo) 1^ 

y-yo = -(»-!ib) 
yo 

or 

(2) + 
y« ^ 

Hence the envelope of the lines (2), where yo is regarded as a pa¬ 

rameter, most be the parabola (1), and the student can readily 

assure himself that this is the case. 

The evolute of a curve was defined as the locus of the centres of 

curvature, and it was shown that the normal to the curve is tangent 

to the evolute; Introduction to the Caiculus, p. 266, § 4. Hence the 

evolute is the envelope of the normals, and thus we have a new 

method for determining the evolute. 

Tot example, the equation of the normal to the parabola 

y = *® 
at the point (xq, y^) is 

x — Xa + 2xo(y— yQ)=0 

or x+2x^y — xt—2a^ = 0, 

and we get at once as the envelope of this family of lines: 

3/ = 3a:J-|-i, x = -4at 

or (y-i)*=«a^. 

The result agrees with that obtained, l.c., p. 264. 

EXERCISES 

1. Obtain the equation of the evolute of the ellipse: 

X = a cos yzab Bin 4>, 

as the envelope of its normals. 

S. The same question for the hyperbola 

X a a sec y =< b tan ^ 

8- Obtain the evolute of the cycloid: 

xs3 a(d—sind), y a» a(l — bos d). 
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4. Obtam the coordinates (%, of anj point on the envelope of 

the normals to the curve y = fix): 

* - *0 +/(*o)(3^ - yo) = 0, 

and show that the result agrees with the formulas of the Introduction 

to the Calculus, p. 263, (9). 

6. Obtain the evolute of the family of lines 

- aU®) x + 2 a^Xy = a(b^-h a‘\‘). 

Ans. The ellipse, x = ~ 2a&«A 
h* + aU*' 

3. Caustics. When rays of light that are nearly parallel fall on 

the concave side of a napkin ring or a water glass, a portion of the 

table cloth is illuminated. Let us determine the equation 

of the boundary. 

Suppose we have a narrow semicircular band, on the 

polished concave side of which a bimdle of parallel rays 

fall. The rays are reflected at the same angle with the 

normal as the angle of incidence, and so we wish to find 

the envelope of the reflected rays. Take the radius of the band as 1, 
Then the equation of the reflected ray is 

(1) y — BinO = taji26{x — COB&). 

To get the envelope of the family, we differentiate with respect to 6: 

Fig. 44 

— cos d = 2 sec*2fl (x — cos 0)+ tan 2fl sinfl, 

2x=:2 cos$ — cos*2tf cos^ — cos 20 sin 2fl sinfl 

= 2 cos 0 — cos 20 (cos 20 cos 0 + sin 20 sin0) 

= 2 cos 0 — cos 20 cos 0, 

a: sa f cos 6 — \ cos 30. 

Substituting this value of a: in (1) we get: 

y = \ 8in0 — ^ sin 30. 

But these are the equations of an epicycloid of two cusps, i.e. the one 

in which a = 2 6, 6 ^ j cf. Introduction to the Calculus, p. 274. 

EXERCISE 

If the band is a complete circle and a point-source of light is situ¬ 

ated on the circumference, draw accurately a figure showing the 

reflected rays and prove that their envelope is a cardioid. 
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4. GiitigiiA ot the Xethod. The method set forth in § 1 has been 

given without any restriction on the fancti<ms, and it is easy to see 

exceptions occur. Thus if equation (1) be solved for a: 

a = X ± Vl — y*. 

and/(as, y, tt) be written in the form 

/(*, y, «)= a - * T VI - y*, 

the equation 8f /da «= 0 now reduces to 1 = 0, and there is trouble. 

And yet « — so qp Vl —y^ = 0 

is just as much the equation of the family of circles as is equation 

A sufficient condition for the applicability of the method, and a 

condition which covers the most important cases which arise in 

practice, is given by the following theorem. 

Thkobbm. Let f{x, y, a) be continuous, together with its derivatives 

of the first tvoo orders, in the neighborhood of the point (Xf,, yo, oo)- Let 

(1) ^ /(a%, yo, «o)==0, /.(*o, yo, «o)=0, 

and let 

(2) f -Jr ¥=0, /„:^0, 

m this point. Then the equations 

(3) f{x, y, a) = 0, /.(x, y, a) = 0 

define a curve which is tangent to eaxh curve of the family 

(4) /(x,y, a)=0 

in the neighborhood of the point in question. 

From the theorem of Chapter V, § 12, relating to implicit func¬ 

tions, it follows, since the determinant (2) is the Jacobian of the 

functions / and^, that equations (3) admit a simultaneous solution 

of the form 

(5) * = y = 

where ^a) and ^a) are continuous, together with their first deriva¬ 

tives, in the neighborhood of the point a = oo, ^^d where 

^(«o)=yo- 

Moreover, the derivs^vee of ^ mid ^ do not both vanish. For, equa- 
tums (3) beoome identitieB when x and y are rephused by and 
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f(a) lespeotiTely. Hence, on differentiating with respect to a, we 

have: 

/*«' + /,</''+ /. = o 

/«<#>'+/».^+/„ = 0 ' 

The second equation proves that and cannot both vanish, 

since by (2) /»» #= 0. Moreover, since /» = 0, the first equation re¬ 

duces to 

(7) fA'+/,>!>'= 0. 

Thus equations (6) define a curve having a continuously turning 

tangent, and its slope is seen from (7) to be 

On the other hand, since and cannot both vanish because of 

(2), equation (4) defines, for an arbitrary value of «, a curve having 

a continuously turning tangent, and its slope is 

dx /„ 
Hence, for an arbitrary value of « in the neighborhood of the 

value oq, the curve (5) meets the curve (4) and since it has the 

same slope, is tangent to it. 

Remark. It will be observed that the results of this paragraph 

are not merely destructive, but are primarily constructive. It is 

here not a question of a rigorous proof of a theorem, the truth of 

which no one doubts. The bare fact as to whether the method 

illustrated by the examples of § 1 has any standing is the first 

question at issue, and that question is answered by the theorem 

concerning implicit functions. 

EXERCISES 

1. Show that the family of curves 

y = p(x, a) 

have an envelope in the neighborhood of the point (a^,, y^, where 

y<i = g{^, «o). 

provided that, at the point (a\), «eo), 

9.(55, a) *= 0, 9,.{s6, «) 0, 

(6) 

9«(a5, a) 0. 
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8. Show that the family of planes 

z - *0 *= a (sc - !Bb) + iS (y - yo), O (a, ^) = 0, 

envelop a cone with its vertex at (z^, y^, Zg), the generators being 
determined with the aid of the farther equation 

g! - «6 ^ y - yo 
Cla 0/J 

State precisely the conditions of continuity (including the existence 
of derivatives) you impose on the function O, and show that a suffi¬ 
cient condition can be formulated as the relation: 

- 2o^Oan^ -f- n«n| 0. 



CHAPTER IX 

ELLIPTIC INTEGRALS 

1. Origin and Definition of the Elliptic Integrali. The determi¬ 

nation of the time of oscillation of a simple pendulum, Introductvm 

to the CalculiLs, p. 373, is given by the equation 

(1) t c r ^ 
Vcosd —cosa 2 j « 

2 
a ■ o d 

If we introduce a new variable of integration: 

(2) sin I = sin ^ sin <^, Ogdga, 
jk 2 

we have: 
i a £f 
^cos~d$=s sin ^ cos 
^ Jh JL 

\ sin^ 5 — sin* f = sin ^ cos A, 
\ 2 2 2 

cos I = Vl — fc* sin* ff» 
T * OC 
«= Bin-* 

2 
Hence 

___ 2d^ 

. ,a ■ ,6 Vl —fc*sin*A’ 
3in* -- — sm* - ^ 

2 2 

and the final formula for t is: 

f— ^ __ 
Vl — ft*sin*^* 

k = sin?. 
2 

Here, <f) can range through the interval — ir/2 ^ ir/2; t is 

measured from the instant when the bob is lowest. 

We are thus led to the function 

FQc, «^) — == C ^<I> 
^ Vl — fc*sii 

0 < fc < 1, 
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wMeb is known as the EMptie Integral of the FiriX Kind in Legendnft 

form. When ^ = ir/2, we have 

(5) 
_chh 

Vl — Fain* 

which is known as the Complete Elliptic Integral of the First Kind. 

Ark of an Ellipse. The determination of the length of an arc of 

the ellipse ar = a sin <^, g = b cos (f> 

was found to be (Introduction to the Calculus, p. 414): 

* 

s VI — e^sin* d4>, 

where e denotes the eccentricity of the ellipse. 

We are thus led to the function 

* 

(6) EQc, <^)== Vl — k* sin® <t> d(l), 0 < * < 1, 

known as the EUiptie Integral of the Second Kind in Legendre's form. 

When <l> = ir/2, we have: 
*• 
$ 

(7) E = / Vl — k^sin^ <l>dtf>, 

known as the Complete Elliptic Integral of the Second Kind.* 

These are all tabulated functions, and abbreviated tables are given 

in Peirce’s Tables. It is, therefore, of practical value to learn how 

to refer to the above certain other integrals that arise in practice. 

Jacobi's Form. A second form of the elliptic integrals is known 

as Jacobis form and arises through the change of variable 

a!5=8in^, —— Igajgl. 

Thus 

* The Elliptic Integral of the Third Kind is 

e 
n(*v«,«)= ( — 

< (1 + nwn* Vl — i^ein* ^ 
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(8) F(k, 4>) 

(9) E(k, ,(,)■. 

dx 

/ 

Vl - 

Vi -'ie» 
dx, E = 

j^_ f_dx 

J V{i~x'‘){i-kh?)’ 

j/ Vl -»* 

The Complementary Modulus. The constant, or parameter, k, 

IS known as the modulus of the integral; and k', defined by the 

equation 

riO) = 1, 0<A:'<1, 

IS called the complementary modulus. The corresponding value of 

K is denoted by K'. 

(11) 
r d,i> 

fc'2 sin* 

The Most General Elliptic Integral. Any integral of the type 

«*)(! - &*®*))tla!. 

where R(x, y) is a rational function of x and y, and the integrand, 

m being simplified, actually involves the radical, is called an ellip- 

'ic integral. Moreover, the radicand may be any polynomial of 

iegree three or four, with distinct roots. 

2. Integrals Eednoible to FQc, <!>). Any integral of the form 

/ dx 

where & is a, polynomial of the degree indicated, having all its 

roots distinct, can be reduced to F{k, 1^) and thus evaluated by the 

Tables in any numerical case. 

I. — Thb Integral C - -:=:z 
J V±(l-x»)(l-k‘x>) 

The standard form is 

X 

m 

/ _d»_ 

V(1 - *•)(! - fc*a!») 

sin — 1 ^ ® g 1> 

F(k, tft), (1) 
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There are tvo other forms correspondiog to the case that the 

roots of (?4(») are ± 1, ± l/*> namely; 

(2) 
r dx 

ig®<oo; 

(3) 
p dx 

J V(®* - i)(i - kh?)* 
1 ^ ® 

k 

In Cases (1) and (2) the radicand is positive in the intervals 

marked with a heavy line in Fig. 46. In Case (3) the intervals in 

_ 1 -1 0 1 1 
i i 

Fio. 40 

which the radicand is positive are the supplementary intervals and 

are indicated by heavy lines in Fig. 47. 

,1-10 1 1 

i k 
Fio. 4T 

It is obviously no restriction to consider only positive values for 

X, since, if x is negative, the substitution x’ = — x brings us back to 

the former case. 

The integral (2) is reduced to the form (1) by the transformation: 

0 g « g 1; 

(20 

The 

/ - 

dx 
= K- 

x‘){l-k^x^) / v(i - 

dt 

transformation required for (3) is: 

V®’ — 1 _ 1 
t — - 

k’x 
X = 

VI - 

(30 
9 

/ dx 

V(®* - 1)(1 - ’/ V(l- 

dt 

The student should perform each time the actual analytic work 

of making the substitution. 
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EsuMph. Required to compute the value of the integral 
1.15 

dx / 
Here, Tcz=\, ir'ss.J-VS, and the upper limit of integration in 

the second integral (3') is obtained by setting x = ^ in the formula 

of transformation. Thus 

t = 
Va?* • 

]tfx 

2V3 
= .6928, 

and we need to know i?”(|\/3, i^), when sin = .6928. 

Turning to Peirce’s Tables, p. 122, and observing that a here has 

the value 60°, and = 43° 51', we have to interpolate in the column 

headed 60°. The entries in that column are as follows; 

.1076 
4> = 46°, .8512 

Since 3° 51' = 3.850°, interpolation by the rule of three, or first dif¬ 

ferences, gives the result .8265. But when the differences are so 

great, the last figure is meaningless, and even the third figure may 

be inexact by a unit (or possibly two). ^ 

Reference to the larger tables of Legendre * shows that the value 

to four places of decimals is .8260. 

A More General Case. We are now in a position to evaluate the 

integrals 
m 

r dx 
0 < ^ < B, O^x^Ai 

<
 

ea i 1 

,0J f . . * .. .. b<A<B, Bg ooj 
V(A*- »2) 

(in)j f . ... ^ .. . OcAkB, Agx^B. 
' - **) 

The transformation 
t = x/A, ■ X s At, 

carries these integrals respectively into the integrals (1), (2), (3), 

divided each time by JB. Moreover, "k ■= A/B. 

* Legendre, TraUi des/onetions Mlptuiues, Paris, 1826, vol. n, p. 208. 
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EXERCtSra 

Compute the values of the following integrals: 

-ji 

dx 

‘7^ 

dx 
f- _ 

• *s)(l -ia^) V(x<‘ - 1)(1 - 0.01 a)*) 

Express the following integrals in terms of f’(k, <j>) 

dx . /* d* 

Ans. -0.5356 

dx 

‘7 

•/ 

V{26-a!*)(49-a!*) 

dx__ 

\/(a^-9)(25-iE*)' 

II. — The Intxgbxl 

/ 
4 

/ 
A 

V(3-2®2)(5 -3®*) 

dx__ 

V(a!» - 9)(26 - as*)’ 

dx 

V±(l-a!*)(*:'*H-fc*aJ*) 

There are two cases here, as indicated in the figures. We give 

the transformation and the resiilt, leaving the computation to the 

student. 

w 
/v^ 

da; 

a;»)(A:'*+fc2a;«) 
= K- / dt 

<*)(!-*»<*) 

< = Vi — ® = VI — <*. 

Fia. tSa 

(«) r- _ 

^ V(a;* - y V(1 - 
dt 

X 
' X ! 

t*)(l - Jr'S**) 

1 

VI -t* 

Ogtgl, 

-X a 
Vio. ISb 

i 
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To tiieae integtalfl the following can be redaeed by the tnuie- 

formatiotx 

'c’ 
x=Cyi 

(iv) J V(C*- 

dx 

(v) / 
"O^ygl, 

dx 

l=t_ dy 

V{!e* - C2)(A«+B^) VA^+BC^J^V(y^ - !)(*'*+Ay) ’ 

1 g y g ao. 

y»)(fc's+*:*y*) 

In each case, 

k = — -, *' = —====:, A, B, C, positive 
y/A^+BC^ 

III. — The Intkobai, /; 
dx 

_ V(1 + a!*)(l 4-Jfc*ar*) 

The upper limit of integration may be any positive number. We 

have: 

(6) / dx = f -■ 0 
J v(i - mi - k'm V(l + **)(! + J y/{l-t^){l-k'Hi) 

t = 
X 

finally, 

(vi) 
/v(^* 

VI+ ®’ 

dx 

Vl-f* 

_L /_ 
+ W)((7’ + D^x^) V(1 + y*)(l + 1^)’ 

dy 

.4, E, (7, E, positive, EC < AD, Dx = Cy, k = 
AD 

3. Ooatinnatioa 
/dx 

Any poljmomial of odd degree with real coefficients has at least 

one real root Let a; = c be such a root of Gt(x). Then the integral 
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cam be seferaied to an integt&i already in 4 2 or S 4 by mdane of the 
transfomation 

»— c =« a* or = — **, 0 ^ z, 

according as the Talnes of x between and Xi make x — c positiTe 

or negative. 

jExample. Consider the integral: 
1 

da; 

/ V— (x — l)(a; — 2)(a! — 3) 

Let a; — 1 = — a*. The integral thus goes over into 

r _2 f 
^ V(l+a>)(2 + a2) ^ 

da 

V(l+a2)(2 + a») 

The substitutions a: — 2 = — a* and * — 3 = — a* would have led 

to other forms equally tractable. 

4. The Oeneral Caee, /; 
dx 

y/Gt{x) 

Let 0^(x) be a polynomial of the 4th degree, whose roots or factors 

are all distinct. If Ot(x) has a real root, x = a, the transformation 

(1) 9 

will carry the integral into an integral of the form treated in § 3y 

namely: , 
dy 

It remains, therefore, merely to discuss the case that 

(2) Qi{x) = {a?-\-pxX-\-q{){pfi-\-p^x + qt), 

0<4?i-pf, 0<4g,-i^, 

the second factor not being identical with the first. Let 

(3) * = y + A. 

Then as*+j>i*+?i=y*+i’Iy+9u 

where ^»=A*+piA + 9'„ = A* 4-M + ?»• 

Let ns seek to determine A so that and gi will be equal; 
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ft’+Pi^ + +Pt^ + 3to 

(4) (j»i -l>*)ft + g, - gj =r 0, A =r-ilSLSb. 
Pi—Pi 

We see, then, that this is possible except in the case pi=pg. 

Bat here we attain our ultimate end immediately by the substi- 

tution 
y = x + )[Pi=x + \pt. 

Secondly, we can reduce the constant terms, q[ and gi(=gl), to 

unity by setting 

(5) y = ** 

and choosing * k = Vgl = VgJ. 

Thus 

©,(*)= + Pi* + 1)(*^ + P,z +1), Pi ^ Pf 

We now make the final transformation: 

(6) 

Thus, 

< = - 
z + 1' 

.1 + f 

1- 

— t) 

with a similar formula for the second factor. We observe that 

neither coefficient, 2 + Pi or 2 — Pi, can vanish, t and moreover, 

that these coefficients are either both positive or both negative. 

For, the quadratic polynomial in z has no real roots. 

Example. 

I 
dx 

V(x’ — 4 » 4- 7)(.r* — 6 X 4-13) 

Here, A = 3, and x = y 4- 3: 

Furthermore, 

dy 

V'(y“4-2y 4-4)(y®4-4) 

= 2, y = 2z. 

* That > 0 is clear from the fact that otherwise the quadratic polynomial 
in y would admit a real root, and hence the polynomial in X would, too. 

t If 3 — Pi were s 0, make the transformation t' = 1/t, and the contradiction 
used in the jaw^ below follows. 



5. Computation by Seriet. We have already seen bow the func 

tions F(k, and E{k, <f>) can be computed by infinite series j /ntro. 

duction to the Ckdcidtts, pp. 414, 416. These series do not, however, 

converge rapidly when k is nearly unity. In this case, a transfor¬ 

mation can be made (Landen’s Transformation, § 6) whereby either 

(a) k will be replaced by a smaller value, ki, and thus the new 

series will become available for practical use; or (b) k can be re¬ 

placed by a still larger value, so near to unity that it may be set 

031 in the integral, and then the latter can be computed by means 

of the indefinite integral. 

8. Landen’s Transformation. We give the transformation with¬ 

out mtOif* Starting with the integral 

we introduce a new variable of integration, iji, by the equation 

(2) sin (2\l> — <t>) sskBm<j» 

*Tlie mathematicians of the eighteenth century were men of great resouroe- 
fnlTiMn in formal work, and many of the leading results in the theory ol 
effii^c integrals and functions were deduced by inspiration rather than 
leMmting. On the otbor hand, the modem theory oi transformation of 
ey^ptie transcendents is too eomplez to admit of a brief description. 



BLLIPTIC INTBQRAI^ 205 

or its equiralent, 

From the first of the equations (3) we have: 

dA«2— 

1 +2fcco8 2^ + A:* 

From (4) it appears that d^/d<f> is always positive, and so, as 

increases from 0 to «■, the determination of ^ with which we are 

concerned will increase from 0 to ir/2. 

Furthermore, from the first of equations (3), sin‘ ^ can be com¬ 

puted, and thus we find: 

(6) Vi - sin* <l> 

From (4) and (6) we have: 

1 -I- A; cos 2^ 

Vl + 2k cos 2^ -f- k* 

(6) 

(7) 

_^_2 dijf_2_d^_ 

VI — k^sin® ^ Vl + 2kcos2i^ + Xfi 1 + A: ^ kfsia^i^* 

4 

(1 + 
i-vnuj 

l+Vl-AI 

On integrating equation (6) we find: 

* 

/ 

(2<^ 

Vl — A:®sin*^ 

2 ^ # 

1 + Vl — sin* 

where the limits of integration, and are connected by (2), or 

either of the forms (3). 

To sum up, then, we have: 

F(k,4,)=^F{k„,li) 

= 8in(2f-<^)=fcBin<^. 
1 4- AC 

The new modulus, fci, is greater than k, but less thanl. For, 

first, if 

2Vk 
1. k 

>*> and 4>A:(l-hfc)». then 
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This b»t inequality is true, since 0<%<1; and now, starting 

with it, we can retrace our steps. In a similar manner it is shown 

that < 1. 

If it is nearly = 1, a few repetitions of the transformation (7) will 

lead to a function whose modulus k„ is so nearly unity 

that it may be replaced by 1 and the integral thus evaluated. Since 

A. 
1 + fc v^' 

we have: 

jr(k, Fik,, 
On setting it, = 1, we find: 

For a detailed study of a numerical case, cf. Byerly, Integral 

Catcultu, 2d ed., chapter on Elliptic Integrals. 

Reducing the Modulus. The transformation (7) can be applied in 

the opposite sense, and thus the given integral is referred to one 

with smaller modulus. The formulas now become: 

(») 1 -Vi+fc! 

1 ^ 
tan(<^ - ^)="A- 

Here, and ^ are given, and k and ^ are computed from the 

second line of (9). The student may find it convenient to rewrite 

(9), interchanging ^ with ^ and k with ki. A numerical example is 

worked in detail in Byerly’s book, l.c. 

After one or two applications of the transformation (9), it may be 

well to finiah the computation by using the series. 

Integrals of the Second Kind, f VI — fc®sin*<^d^. Landen’s 

transformation can be applied to these, too, and thus the computa- 

ti<m carried through; of. Byerly, l.c. An excellent treatment of 

this subject,including also the rectification of the hyperbola and the 

lemniscaiiBf and the oomplanation of the central quadrics, is found 

is Schlbinilch, ClotHpendium derr hUheren Analgeis, vol. 2, 2d ed. 
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7. The B31iptlo Funotioae. If we set 

« = r ■■ - : - , - 1 g » g 1, 
^ V(1 - *»)(! - 

the equation represents « as a function of x. The inverse function, 

X, regarded as a function of u, is called the sine amplitude of u and 

is written 
X = sin am u or x= snu. 

Two other functions are defined by the equations: 

Vl — a? = cos am u or cn «; 

= A am u 

(read: “ delta amplitude of u” or “ d n u.) These functions are 

known as Elliptic Functions, and any rational function of tliem is 

also called an elliptic function. For a brief treatment of thorn, c£. 

Byerly, l.c. A more extended study is found in Pierpont’s Func¬ 

tions of a Complex Variable, Chapters X-XII. Cf. also, both for the 

slliptic integrals and the elliptic functions, Schlomilch, l.c. 



CHAPTER X 

nmETERMINATB FORMS* 

1. The Iiimit 

oust ia the interval 

(1) 
and let 

(2) 

Let two functions, f(x) and ^(a;), be continu- 

a g * g 6, 

/(a)=0, J?’(a)=0 

The ratio of these functions, 

(3) 
F{xy 

will not be defined when ® = o, since it takes on the form 0/0, and 

division by 0 is impossible. Nevertheless, the ratio (3) may approach 

a limit when x approaches a, and this is, in fact, usually the case in 

practice. For example. 

(0 
» — g __ 1 

ar’ — a* a; + a’ 
«k. 

lim^^-i-=rlim—-— = 
»*a q!^ »*«*« X Ct M Qf 

(ft) lim?^*=l. 
X 

Suppose, furthermore, that each function has a continuous deriva¬ 

tive at every interior point of the interval, and that F’{x)-^ 0 there; 

(4) F’{x)=^0, a<x<b. 

By the Law of the Mean, Chap. V, § 2, 

/(a + ft)-/(a) = ft/'(X), F(a -f ft) - F{a) = hF'{X'), 

0 < A < 6 — a, 

where a<JX<o + A, a<X'<o + ft. 

* This subject was formerly made much of in a first course in the Calculus, 
doubtless becauae it yielded a vast fund of problems in difierentiation. But we 
have not yet needed it, nor shall we find an application for the results fill we 
take up Improper Integrals in Chapter XIX. 

208 
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Since (2) is true, we have: 

(6) 
F(a + h) F'(S’) 

If, now, these derivatives exist and are continuous at the point 
3! =» o, too; and if F'{a)z^ 0, then*' 

(6) 
F{x) **o F'(X') F'{a) 

For example, 

(7) lim • 
X 1 

But if, as in the case of 

(8) 1 — coax 
a = 0, 

f'(a) and F'(a) both vanish, equation (6) breaks down, nor can we do 

anything with (5) since we do not know how X and X • vary relatively 
to each other. This case can be dealt with as follows. 

Gbsteealized Law of the Mean. lff{x) and F{x) are continu¬ 

ous throughorU tke intervai a and each has a derivative at aU 

interior points of the interval, and if, moreover, the derivative F'{x) 

does not vanish within the interval^ then, for some value x = X within 
this interval, 

(9) 
F(b)-F(a) F'{X)' a < X < b. 

* In this case the result can be obtained at once, since 

/(x) _/(o + A)-/fa) /F(a + h)- FCa) 
J'C®) h / h ' ' 

and the limit of the right-hand side isseen to be/'(o)/J’'(a). Thin is known as 
“ rHospitat's Rule,” dating from 1660. 

The limit is also called the “ true ralue ” of the “ indeterminate form •’ 
/(x)/F(x) for x = a. Both terms are based on a false conception. In the early 
days of the Calculus mathematicians thought of the fraction as really having a 
Ttine when » = o, only the value cannot be computed because the form of the 
fraction eludes ns. This is wrong. Division by 0 Is not a prooe® which we 
define In Algebra. It is convenient, however, to retain the term indeterminate 
farm as applying to such expressions as the above and othew considered In this 
chapter, which for a certain value of the independent variable cease to have a 
meaning, but which approach a bmlt when the independent variable oonveigee 
toward the exceptional value. 
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The ftznotion * 

satisfies all tlie conditions of ItoUe’s Theorem, Introduction, p. 430, 

and hence its derivative, 

^i/x) = /(j’)~/(”). F'(x) - f'(x\, 
> F(b)-F(a) 

must vanish for a value of x within the interval. Hence 

F'(X)-f'(X) = 0, 
F(b)- F{a) ^ ^ ^ ’ 

a < X <b. 

By hjrpothesis, F'{x) is never 0 in the interval. Consequently we 

are justified in dividing through by F\X), and thus (9) is estab¬ 

lished. 

The Limit -, Concluded. We can now deduce a more general rule 

for determining the limit of the function (3). Applying (9) to an 

arbitrary sub-interval (a, x), when a <. x <b, and remembering that 

/(a)=x 0 and J!’(a)o= 0, we see that 

(10) m=fm, 
F{x) F'{X) 

a<X<x, 

where now we have the same X in numerator and denominator. 

When X approaches a, X will also approach a. Hence, if/'(») /F'{x) 

approaches a limit,/'(X)/A’'(^) approach the same limit, and 
So will its equal,/(a;)/^’(a;). Thus we have: 

(I) Urn m 
Fix) 

ZM. 
F'ix) 

If, then, it turns out on differentiating that /'(o) =» 0 and F'ia) = 0, 

we can differentiate again, and so on. 

Example. 

Urn ^ = lim »lim ^. 
•40 ^ ie40 3 x'^ »M) 6 ^6 6 

* We c&n divide by F(b) — ^*(<1)1 fiinoe 

J’(o) = (6-o)J»(r). a<T<b, 

and Slather factor on tite right is 0. 
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Besmmk. 'The Theorem can be extended to include the case liiat 

f(x)/F'{x) becMaes positively infinite or negatively infinite. The 

function f(x)/F{w) then becomes positively infinite or negatively 
infinite. 

Moreover, instead of approaching a from above, a; may approach 

a from below, or x may become positively infinite or negatively 
infinite. 

EXERCISES 

Determine the following limits: 

1. lim 
Sinira: 

•*-11 + x 

1 — cos* 

2. 

4. lim 
tan’s 

E. lim 

jr 
- a? 

4 

sms — s 

mU) tan s — s 

3. lim 
itH) 

o* -5» 

X 

6. lim 2^. 
•—He CSC'* S 

2. The Limit Consider the fraction 

(1) m, 
F(xy 

where /(a) = oe and F(a) s= oo. We wish to determine 

(2) 

Simple cases, like 

limi^. 

lim 
2n-l 

3n + l’ 
lim —^ 

Vs’ — 1 

are dealt with directly by obvious algebraic reductions; cf. Intro¬ 

duction, p. 29. In less transparent cases the following theorem 

often makes possible the evaluation. 

Theosem:. 

and let 
Let f(x) and F{x) be defined in the interval a < s g &, 

/(a)=sw, F{a)=sc. 

Let /'(s) and F'(x) exiat ai each point of the above interval and let 

F\x) be different from 0 there. If f'{x)/F’{x) approaches a limit a* 

X approaohee a, then f(x)/F(x) also approaches a limit, and these 
limits are egital: 
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for otHiTemeiiioe, let a as + aa, the interval then becoming 

g ^ a < CO. By the Generalized Lav^ of the Mean, § 1, ve hare 

F(x)-F{x') F'(xy 
Hmoe 

(3) Fix) F\xy 

g<x' <x, 3/<X<x. 

^^l-Fjx-i/Fix) 

1 -/(^')//(®) 

Now let a; and s' both become infinite; but let x increase bo much 

more rapidly that 

lim = 0, 
MOfZ'ne jiX) 

lira ^ = 0. 
«.«e, 

Then lim X = 1. Now, X becomes infinite, and hence the whole 

right-hand side of the first equation (3) approaches the limit which 

f'isi)/F'ix) by hypothesis approaches. Thus the theorem is proved.* 

If f'i3^)/F'ix) becomes positively infinite, or negatively infinite, 

the same is true of f{x)/F(x). 

If a is a finite point, the same reasoning still holds, with obvious 

modifications in details. Or, this case can be referred directly to 

the above by means of such a substitution as 

y s=t l/(a! - or), a: = o + 1/y. 

This theorem has the same advantage as that of § 1, namely, that, 

if we do not get a result after the first pair of differentiations, we 

may differentiate again and again. If, after k repetitions, we do 

get a result, then the original ratio approaches this same limit. 

Example 1. lim 5!. 
e* 

If n ^ 0, the limit is obviously 0, since the numerator remains 

finite and the denominator becomes infinite. If, however, n > 0, we 

see that the above ratio approaches 0 provided n^l. Ifn>l,a 

finite number of repetitions will lead to a ratio whose limit is 0, and 

thus the given ratio approaches 0 for any fixed value of n. 

Example 2. lim 0 < a, 0 < /3. 

If a aa 1, we have 

xl^ px^ 
ogx 

1 Hm - 

* Ihe dieorem is due to Cftuci^, who gave a |nno{ under certain restiiotlons. 
complete pnxd, given above, is due to the Austrian mathematician Stolz. 
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U a 3^1, -write 

{iog£)^^riog®T 

Since the variable standing within the brackets approaches 0, and 

since a is positive, the whole right-hand side approaches 0, and thus 

the original variable approaches 0 in all cases.* 

3. The Limit 0- ao. If /(») approaches 0 and <fe(x) becomes in¬ 

finite, the limit approached by the product may often be determined 
by writing 

= A(^ 
!//(*) 

thus throwing the variable into the form discussed in § 1 or § 2. 

Example, lim x log x. 
nscO 

X log® = lim(® log*) = lim = lim(— *)= 0. 
*~1 **0 

4. The Limits 0*, 1“, od“, ao —oo. The function /(*)♦'*> can be 

written in the form 

When one factor in this last exponent approaches 0 and the other 

becomes infinite, the limit of the exponent is of the type considered 

in § 3. Thus we are led to the limits which may be symbolized as 

0“, r, oo". 

Example. lim x*. 

Since lim (*log *) = 0 by § 3, 

lim *' = lim e*’"*' = 1. 

The limit of/(*)— <^(*), where/(*) and <^(*) both become infinite 

-with the same sig^a, is usually best treated by special methods. 

Example, lim {V** 4-1 — *i- 

Write = =-L-, 
V»® -i- 1 + 35 + X 

* A thorough appreciation of the meaning of the graph of the function y = x*, 
ImrodueUon to the Calculus, p. 160, is important in tite study of the present 
chapter. 
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and the limit ia obvious. Or, the method of series may be used: 

ni Va* + 1 = * 
2aS 

, eto. 

EXERCISES ON CHAPTER X 

Determine in the most convenient manner possible each of the 

following limits. 

1. lim a*”**. 

4. lim 
—• 1 + a; 4- ** 

2. lim a*e~**. 

5. lim - 

8. lim 0 < o. 

Vl + x + x^ + 

S. lim x'e-' log x. Suggestion : a"e-* log x = ^^^2115^. 

T. lim*"e~*(loga)*. 

9. lim c”* cot-‘a. 

8. 
>=. (loga)^ 

10. lim- 

jO<a, 
lo</s. 

11. lim (sin x)**"". 



CHAPTER XI 

inrs IinEGRALS and green's theorem, flow of heat 

1. Work. We have defined the work, W, done on a particle bj a 

variable force, F, when the particle moves along a straight line and 

the force acts along the same line, by means of the integral (Intro¬ 

duction to the Calculus, p. 338): 

(1) W= 

6 

Here, F may be any continuous function of x, positive or negative, 

and thus W is also a signed quantity. The interval throughout 

which the particle is displaced may be variable. Thus if ^ be any 

point of the interval a^x^b, and the particle be displaced ^rom a 

to the work done will be I 

Definite Integral as Function of Upper Limit of Integration. We 

have here before us a first example of a function represented by a 

definite integral, the upper limit of integration being the independ¬ 

ent variable. Let f{x) be continuous in the interval o g x g 6, and 

let i be any point of this interval. Then 

i 

/■ f(x)dx 

is z, function of i, which we will denote by If we change the 

notation, denoting the variable of integration by t and the upper 

limit by x, we have: * , 

dt. 

* The notation dx should be avoided till the student is thoroughly con¬ 

scious ot the difierent meanings of the letter x in this expression. 
215 
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The function ^9) thus represented or defined admits a derivative^ 

obtained as follows. Since 

4,(xa + A) - ^(aio)=Jf{t) dt, 

we hare, on applying the Law of the Mean, 

Jf{t)dt = hf(x^ + dh), o<»<i. 

Hence 

‘ = /(i«b + and lim - 
hiM) 

Thus we have proved the theorem that 

X 

I J’/(,)*-/(«). 

EXERCISE 

Prove that — / /(t) dt — — /(«). 
dxj 

3. Oontiniistion: Curved Paths. Suppose the particle describes a 
carved path C7 in a plane, and that the force, g, varies in magnitude 

and direction in any continuous manner. Wlmt will be the work 

^ < done in this case ? 

Suppose the path O' is a right line and the 

force, though oblique to the line, is constant in 

P ___2_ magnitude and direction; Fig. 50. Resolve 

the force into its two components along the 

line and normal to it. Surely, we must lay 

down our definition of work so that the work done by g is equal to 

the sum of the works of the component forces. Kow, the work done 

by the component along the line has already been defined, namely, 

FI cos where j g | is the intensity of the force. 

It is an essential part of the idea of work that the force overcomes 

resistance through distance (or is overcome through distance). Now, 

the normal component does neither; it merely sidles off and side* 

steps the whole <|uestion. It is natural, therefore, to define it as 
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doing no Tork. Ttias ire arrive at onr final definition: The work 

done bj gf in the partieolar case in hand shall be 

(1) W= FI coi til. 

A second form of the expression on the right is as follows. Let 

X and Tbe the components of % along the axes. Let r be the angle 

that the path AB makes with the posi¬ 

tive axis of *. Then the projection of 

g on AB is equal to the sum of the pro¬ 

jections of X and T on AB, or 

Foos ij/= X cos T -1- Fsin t. 

On the other hand, 

= Z cos T, Vi —yi = I sin T. 

Hence 

(2) W=X{x^-z,) + T(y,-y,). 

The General Case. If C be any regular curve, divide it into n arcs 

by the points Sq = 0, «i, •••, s„_i, = Z. Let gi be the value of g at 

au arbitrary point of the fc-th arc, and let be the angle from the 

chord (sj^-v, s*) to the vector gj,. Then the sum 

^ FJcos^'i!*, 

where l^ denotes the length of the chord, gives us approximately 

what we should wish to understand by the work, in view of our 

physical feeling for this quantity. The limit of this sum, when the 

longest Z* approaches 0, shall be defined as the work, or 
n 

it 

Since lim = 1, 
As* 

is clear that the above limit is the same as 

fl 

F cos \l> ds. 

For, the conditions of Duhamel’s Theorem are fulfilled if 

jS* = Flcosi^:Z|fe, *** =s cos ifi,, 
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WeMve^ titeo, »s tiie expresaim for the work, 
I 

1) ir=!J'f COB ij/ds, 

A second formula for the work is obtained from (2), namely, 

5) W= lim y (Xi Ar* + Fi Ay*). 

This limit can also be expressed as an integral. Since 

lim =1 and lim—^^=1, 
As* cos r* As* sm r* 

we see that, on setting 

«* = (X* cos T* + F* sin t*) As*, ;8* = Xi A** 4- Fi Ay*, 

the conditions of Duhamel’s Theorem are fulfilled, and hence the 

above limit has the value: 

(Xcost+ F8inT)ds or 

Thus the limit (6) is seen to exist, and to have for its value the 

integral (6). The limit (5) is an example of a line integral, and is 

expressed by the following notation, § 3; 

(•'.1 

Xdx + Ydy Xdx-\- Tdy. 

The extension to three dimensions is immediate. Formula (4) 

requires no modification whatever. Formula (7) is replaced by tiie 

following: 

(8) W =i I Xdx + Tdy + Zdz or Xdx + Tdy + Zdss. 

Example 1, To find the work done by gravity on a particle of 

mass m which moves from an initial point (xg, yo, Zo) to S' 

point (**, y*, z,) along an arbitrary twisted curve, C. 

X4et the axis of z be vertical and positive downwards. Then 

X » 0, F= 0, Z= mg; 

»i 

J*Xdx+Tdy + Zds=B J'mgdz^mgizi — zo). 
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Aeiace ftift wV fta®6 \% to toa -pTOacas* oi toa totaa \>^ to® 
difEeienoe in levd., and depends only on the initiial and hnal points, 
but not on the path joining them. 

Example 2. Consider a field of force, corresponding to a force 
function, u (Cliap. V, § 17). Then the components of the force 
which acts on a unit particle at any point of the field will be: 

■rr ^ Sit 

~dy' ~dz' 

Let the particle describe a curve C in the field, running from the 
point A to the point B. The work done by the field on the particle 
will be 

Hence the work done is equal to the change in value of the force 
lunction, taken along the path. 

EXERCISES 

1. A well is pumped out by a force pump which delivers the 
water at the mouth of a pipe which is fixed. Show that the work 
done is equal to the weight of the water initially in the well, multi* 
plied by the vertical distance of the centre of gravity below the 
mouth of the pipe. 

2. A meteor, which may be regarded as a particle, is attracted 
by the sun (considered at rest) and by all the rest of the matter in 
the solar system. It moves from a point .^4 to a point B. Show 
that the work done on it by the sun is 

Tr= 
Vi ’’0/ 

where and ri represent the distances of A and B, respectively, 
from the sun, and A is the gravitational constant. 

3. A straight wire carries a current, thus generating an electro¬ 
magnetic field of force. The force which acts on a unit north pole 
is inversely proportional to the distance from the wire, and in the 
direction at right angles to the wire and to the perpendicular 
dropped on the wire. Find the work done on a unit north pole, 
when the latter describes a circle, the axis of which lies along the 
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3. ti^ggraU. The limits (B) and (S), $ 2, tire tTpioal illos. 

tol^oQS of hav liiM iotegrals come into mathcmaties. X^et 5 be a 

region of the (x, y)-plane, and let 

O' *=/(<)» y-4>it), 
be a legnlar curve lying in 8. Let F(x, y, t) depend (continuously) 

on toe point (x, y) in 5 and toe point t of C. Divide C into n arcs 

by toe points «o “ 0, «i, •••, «, = I, where s denotes toe arc, and 

I, toe length of 0. Let (ai, y[) be an arbitrary point of the fc-th arc, 

(**-!> be any second point of the same arc. Then 

<1) = 

is defined as the line integral of the function F along the curve C. 

That this limit exists is clear from Duhamel’s Theorem, since 

(2) 

is toe ordinary integral of F{x, y, t), a continuous function of s. 

It is particularly to be remarked that, in the definition (1), 

is not a signed quantity, but is essentially positive. Thus the value 

of toe line integral (1) does not depend on the sense of integration 

along C. We might equally well integrate in the opposite sense; 

toe result would be the same. On the other hand, the line integrals 

presently to be defined are signed quantities. Beversal of the sense 

of int^^tion along C reverses the signs of these integrals.* 

Definition of the Line Integral J*Pdx + Qdy. 

Let P be a function of (x, y), continuous throughout 8. Let C be 

given as before, and let C be divided into n arcs by the points 

(Xjt, y^). Form toe sum: 

(3) Ax*=»x»-x*_,, 

• It seem t]iat the integral for the work, 1F= J Fcos^ds, !a an exoep- 
* a 

tiOB, since reversing the sense in which the particle describes O reverses the sign 
of W work. But when the sense is reversed, is replaced by its suppiemeok 

and thus the sign ci cosf is revueed. 
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where yl) is any point of the fe-th arc. Then this sum ap¬ 

proaches a limit when n'becomes infinite, the longest arc approach¬ 

ing 0. For, let x =s <o(s), where increases with k. Then 

= <a(«t) — (I)(«*_!) = As* cos Tj. 

Now ^ , 

(4) lim ^ P(®*, 2/k) cos As^ =r / Pcos t ds 
«=» fei ^ 

is the ordinary integral of Pcosr, a continuous function of a. 

Hence the limit (3) exists and is equal to the integral (4). We 

write: ^ (.m») ' 

(5) lim 2 P(a:i, 1/i) Aaij = fpdx or fpdx. 

(a. fr) V 

If C is divided into n arcs and the extremities numbered in the 

inverse order, the new variable (3) approaches as its limit the 

negative of the former limit. Thus reversing the sense of the inte¬ 

gration reverses the sign of the line integral, or 

(«', fc') (a, h) 
/% ^ 

(6) CPdx = —JPdx, 

(i't) (.'V*') 

the curve C being the same in both cases. 

The limit of (3) is precisely of the type (1), and thus may be written: 

(7) P COST da. 

When, however, the sense of the integration is reversed, r is re 

placed by T ± IT, and so the sign is changed. 

The line integral 

(8) 
‘“a*'* /» 
jQdy or jQdy 

(ift) a 

is defimed in a similar way. Finally, 

(9) lim [P(4, yi) yi) = f^dx + Qdy 
nmab 

or 'fpdx+ Qdy, 

(».») 

for this limit is evidently equal to the sum of the line integrals (6) 

and (8). 
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Tl^ ideatities (ji), (B), {O) are usually referred to iu the litera¬ 

ture as Green’s Theorem (1828) or Gfauea^e Theorem (1813). Such 

idfflitities go back, however, much further, appearing (in the case of 

volume integrals) as early as 1760/61 in work of Lagrange’s. The 

theorem of Ex. 6 below may, however, properly be called Ghreen’a 

Theorem. Gf. a note in the author’s Funktionentheorie, Yol. I, 2d 

ed., p. 600. 

EXERCISES 

1. Extend the integral /ydx — xdy 
a^ + yi 

in the positive sense over the boundary (i) of a circle whose centre 

is at the origin; (it) of a circular ring with its centre at the origin. 

Ana. (i) —2w; («) 0. 
3. Show that the integral 

xdy— ydx, 

extended in the positive sense over the complete boundary of any 

region, is equal to twice the area of the region. 

3. Setting 

show that 

4. Setting 

show that 

D dv 
dy 

p=« 
w 

n 

B. Setting 

show that 
^“^8x*'^8y»’ 

jfJ*(uhv-vhu)dS=. 

This equation is properly known as Green’a Ihoorem. 

da. 
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6. Prove that 

jr/(s-g)--/n- 
7. If u is a solution of Laplace’s et^uation, 

, dht - 

show that 

s c 

8. If u is a solution of Laplace’s ec[uation, show that 

9. If u is a solution of Laplace’s equation, which is not a con 
stant, show that ‘ 

f u^da<0. 

5. The Integral^Fdx + Qdy. 

Theokbm 1. Let P and Q be two functions which, together with the 

derivatives dPjdy and SQ/dx, are continuous within and on the bound¬ 
ary of S. Let 

(1) = ^ 
By Bx 

at every point of S. Let 2 6e any region lying in S; the boundary C 

of 2 may coincide in part {or wholly) with that of S, Then 

J'PdxJr Qdy = 0, 

the integral being extended over the complete boundary of 2 tn the posi¬ 
tive sense. 

The proof is given immediately by means of the relation (C) of 

§ 4, since the double integral has the value zero. 

Tbeorbm 2. Conversdy, if P and Q are continuous, together wUh 

BPfdy and BQ/dgs, within and on the boundary of 8, and if 

fpdx-^QdyraO, 
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C being the boundary of an arbitrary region 3 lying in S, then 

dy dx 
at every point of 3. 

Suppose the theorem false. Then the continuous function 

dy dx 

must be different from 0 at some interior point A of S, and hence 

must be either positive at every point of a suitably chosen neighbor¬ 

hood of A (say, throughout the interior of a small circle about A, 

lying ■wholly in S) or else negative throughout such a region. But 

then the double integral of (C), § 4, could not vanish when extended 

over this region; and since the line integral which forms the right- 

hand side of (O) vanishes by hypothesis, we are led to a contradic¬ 

tion. Hence the theorem is established. 

EXERCISES 

1. Prove by an example that the following theorem is false: Let 

P and Q be two functions which satisfy the conditions of Theorem 1; 

and let (7 bo a simple closed curve lying in 3. Then 

f Pdx -I- Qdy = 0. 

2. Let 5 be a ring-shaped region bounded by the curves Ci and 

C7j, and let P and Q satisfy the conditions of Theorem 1 in (S'. Then 

^ Pdx+ Qdy= ^ Pdx+ Qdy, 

where each integral is extended in the clock’-wise sense over Oj 

or Cf 

t. Simply and Knltiply Connected Begions. By a simply connects 

regkm is meant a region such that no closed curve drawn in the 

region contains in its interior a boundary point of the region. All 

other regions are called multiply connected. 

Thus s square or an ellipse is simply connected; more generally, 

the interior of any simple closed curve, together with the boundary, 

fotms a simply connected region. It is not necessary that the 

T^on be finite. The whole plane, or a half-plane, or the region 

bounded by two rays which emanate from a point, or the (x, y)-plane 
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exclii»Te of the positive axis of x,—all these are ^camples of simply 

connected regions. 

A circular ring is an example of a multiply connected region. 

Consider a region S lying inside a curve C, but outside each of the 

curves Ci, C„. If cuts be made along lines joining the inner 

boundaries with the outer boundary, the new 

region, S', will be simply connected. It is clear 

that n such cuts suffice. These may be drawn 

in a variety of ways. Thus the curves Ci, 

could be connected in series, and one of them 

connected also with G. But it can be shown 

that, no matter how the cuts be drawn, their number will always be 

the same, namely, n. Such a region is called doubly (n = 1) or triply 

(n = 2) or (n -f- l)4uply connected. 

A simply connected region cannot have a boundary that consists 

of more than a single piece. But not all regions whose boundary 

consists of a single piece are simply connected. Thus the exterior 

of a circle is multiply connected. It is said to be doubly connected, 

since a single cut, as the ray which consists in a radius produced, 

would yield a simply connected region. Again, the whole plane 

with the exception of a single point is a doubly connected region. 

A simply connected region can also be characterized by the fact 

that any closed curve drawn in the region can be deformed continu¬ 

ously (like a flexible elastic string) to an interior point of the region 

— more properly, until it lies wholly within an arbitrarily small 

neighborhood of the point — without ever coming into collision with 

the boundary of the region. 

Space of Three Dimensions. The ideas and definitions just set 

forth admit a two-fold generalization to space of three dimensions. 

Consider the space V between two concentric spheres. In this shell 

a surface can be drawn (namely, a third concentric sphere) which 

contains a part of the boundary of F in its interior. Thus we should 

be led to consider V as multiply connected. But a closed curve 

drawn in V can be deformed continuously to an interior point of F 

— t.e. until it lies wholly within an arbitrarily small neighborhood 

of the point — without ever touching the boundary of F. For this 

reason it is natural to regard F as simply connected. We can meet 

both situations by saying that F is linearly simply connected, but is 

multiply connected with respect to surfaces. 

The space (either interior or exterior) bounded by an anchor ring 

Fio. 64 
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ifl multiply ocnmected in both senses. If a space is linearly mnltiply 

connected, it is obviously multiply connected with respect to sur- 

For, if an arbitrarily slender tube lying in the region could 

be drawn together continuously to an interior point of the region 

without colliding with the boundary, the same would be true of a 

simple closed ciirve lying within such a tube. 

The interior of an anchor ring can be rendered linearly simply 

connected by introducing a diaphragm, as for example the cut made 

by a half-plane through the axis. It is not easy to prove that this 

is true of all the spaces bounded by a finite number of curves and' 

surfaces such as are most familiar to us. So in the following we 

shall restrict ourselves to spaces that are known to have this prop¬ 

erty. If n diaphragms are needed to render a given space linearly 

simply connected, we shall say that the original space was linearly 

(n -f l)-tup^ connoted. Thus the interior of an anchor ring is line¬ 

arly doubly connected. 

7. The Integral / Pdx -|- Qdy. 

(M) 

Thkobeu 1. Let P and Q be continumcs, together with dP/dy and 

dQ/dx, throughout a region S of the plane. If the integral 

(•.r) 

(1) 
(•.») 

Pdx+Qdy, 

extended along an arbitrary curve drawn in 8, has the same value for 

all such curves, then 

(2) 
^ dy dx 
eU every point of 8. 

More generally, the theorem is true if the points (a, 6) and (r, y), and 

t&e curve joining them, are restricted to lying in a square, the length of 

whose sides does not exceed a certain positive constant, h, which however 

mag be arbitrarily small, and whose centre may be any point of 8. 

Let (asi, yi) be any interior point of S, which we now hold fast 

and surround by a square S, lying wholly in 8. Let C be any 

simple dosed curve lying in Si, and let (a, b) and (a', &*) be two 

points of O, dividing 0 into the arcs Ci and C^. Since by hypothesis 

Tpdx + QdyaB Cpds-\-Qdy, 



LINE INTEORAL8 AND GREEN’S THEOREM Z19 

each integral beii^ taken from (a, b) to (o', b'), it is seen that 

J*Pdx + Qdy 0. 

Hence by Theorem 2 of § 5 the relation (2) holds throughout and 

therefore, in particular, at (ajj, y,) *. But the latter point was any 

interior point of S. Thus the proposition is proved in all cases. 

Thsobem 2. Let P and Q be continuous, together with dPfdy and 

dQfdx, throughout the interior of a region S of the plane, and let 

dy dx 

If S is simply connected, the integral 

fef) 

CPdx+ Qdy 

(«%) 

has the same value for all paths joining (a, b) with (x, y), and thus is a 

single-valued function u of (x, y). The derivatives of u exist and have 

the values ^ „ 

r=«- 
du __ p 

dx ’ 

Consider two paths, Ci and (7*, drawn in S from (o, b) to (x, y). 

If they meet only at their extremities, they form together a simple 

closed curve, C, and the integral extended along C has the value 0 

by Theorem 1 of § 6. If, however, they meet in other 

points, a third curve, 0,, can be drawn in S from (a, b) 

to (x, y) meeting each of the curves C, and (7* only in its 

extremities, or at most in a finite number of points. The 

value of the integral for Cj will be the same as for (7i or 

Cj, and hence these latter values will be equal. 

It is seen, then, that the integral defines a single-valued function, 

u, throughout S. To differentiate u, let (x„ y,) be an arbitrary 

interior point of S. Hold y fast and give to x an increment. Ax. 

The corresponding increment in w has the value 

Fio. ss 

* We are using here a slight generalization of Theorem 2, which oonsista in 
restricting the regions 2 to being simply connected. The proof holds good for 
this more general case. At the time the theorem was stated, dmply connected 
regions had not been introduced. 
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8. fb»£ategTal/ Pdx+Qd}/+Sdx. 

l<hVc) 

Theosem 1. Let P, Q, B, together with the derivatives which enter 

below, be continuous throughout a linearly simply connected region V of 

space. In order that the value of the integral 

CPdx->r Qdy+ Bdt 

be the same for all paths joining (a, b, c) and (x, y, z), and lying in V, 
it is necessary and sufficient that 

iQ^iB 
dz by ’ dx dz ’ By dx 

When these latter conditions are fulfilled, the function u defined by 

the integral admits derivatives, which are given by the eguations: 

The proof of the equations (2) is given exactly as in the two- 

dimensional case, §7. Moreover, that equations tl) form a neces¬ 

sary condition can be shown by means of the results of § 7, one 

variable at a time (os or y or z) being held fast. That these equa¬ 

tions also represent a sufficient condition will be proved in § 10 by 

means of Stokes’s Theorem. It is, however, possible to give an 

elementary proof without the aid of Stokes’s Theorem; cf. the 

author’s Funktionentheorie, Vol. I, Chap. 4, §3, the method there seb 

forth admitting immediate extension to space of n-dimensions, or to 
the integral 

J'Pidxi ■\-Ptdxt-\- ... + P,das,. 

ConditionB (1) now take the form: 

For (2) we have 

^ 7. , „ 
0*, ^=1.2, ..., n; 

„ p 
a®* *’ 

Aj SB 1, 2f •••f fL 
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EXERCISE 

Discoss the theorem of the text for the case of a region V which 

can be rendered linearly simply connected by the introduction of a 

finite number of diaphragms, like the cuts of the two-dimensional 

case. 

Theoebm 2. Let P, Q, R he two functions which, together with 

the derivatives that enter below, are continuous throughout a linearly 

simply connected region V of space. In order that 

/ Pdx -f Qdy Rdz = 0, 

where C is any simple closed curve lying wholly within V, it is necessary 
and sufficient that 

dy dz ’ dz dx ’ dx dy 

The proof of this theorem is also given in § 10. 

9. Green’s Theorem in Three Simeruions. Let P be a function 

of (x, y, z), continuous, together with dP/dz, within and on the 

boundary of a region V. Form the triple integral 

It can be evaluated by means of the iterated integral, Chap. IV, 

Y 8 

y, ZOdS- J JP(x, y, Z,)dS, 

where S denotes the projection of Von the (x, y)-plane. 

These latter integrals can be expressed in terms of surface inte¬ 

grals taken over the two nappes * of the boundary of V, 

• These nappes can he conveniently visualized as follows. Think of F as an 

opaque solid, and rays of light descending parallel to the axis of z. The part 
of the boundary illumined will be the upper nappe ; the dark part of the boun¬ 

dary, the lower nappe. Moreover, 8 is the shadow oast by this solid on the 

t*, y)-plane. 
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the upper nappe Si, * = » ^(os, y); 

the lower nappe 1^, * «■ ij, #* y). 

Let y denote the angle which the 

outer normal to the surface S of F makes 

with the positive axis of z.. Then 

y,Z,)dS = IS^ cos y dS) 

Thus the difference of the two double 

integrals is seen to have the value of the 

surface integral of P cos y taken over the entire surface S, and so we 

have the result: 

Similar formulas could have been obtained if we had started with 

partial derivatives with respect to a? or y, the region V being now 

projected on the (y, z)-plane or the (z, z)-plane. The results in all 

three cases can be collected as follows: 

(2) 

where we have replaced the letter S, as referring to the bounding 

BUAoe, by the letter 8. 

If we had used the inner normal, the sign of each right-hand side 

v'ould have been reversed. 

On adding the three equations (2) together, we get: 
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f/' 

-//< 

{A cos a + Bcoap + O cob y) dS 

(-4 COB a + B COB /3 + Ceos y) dS 

(outer normal) 

(inner normal). 

The theorem embodied in this equation (in either form) is of 

fundamental importance, and we shall point out presently a number 

of its applications. It will be shown in Chap. XIII that each side 

of the equation is invariant of any rigid motion of the axes, or of 

any transformation to other Cartesian axes, provided merely that a 

right-handed system does not go over into a left-handed system. 

In the proofs gj,ven or indicated above it is tacitly assumed that 

the surface of V is cut by a parallel to the axis in question at most 

in two points or a single line-segment. It is sufficient for the needs 

of practice to restrict ourselves to such regions V as can be cut up 

into a finite number of regions Vi, F*, •••, for each of which this is 

true. On writing down equations (2) or I. for each of these regions 

and adding, the corresponding equation for V results. 

These theorems are known in the literature as Chreen’s Theorem or 

Oauas’s Theorem; cf. § 4, end. 

EXERCISES 

1. Show that the integral 

• //< a cos a -I- y cos p.+ z cos y) dS, 
a 

where a, p, y refer to the outer normal, is equal to three times the 

volume of the region. 

2. Setting 

show that 

. dv T, ^ rt Sv 

'^"“5' 

r r r i i r r 

=-//“ 
dS, 

where dv/dn is the directional derivative of v along the inner normal 



3. Setting 

show that 

Au 
0Hi ■ d^u . dki 

?y* S**’ 

where n refers to the inner normal. This equation is properly 

known as Qreeids Theorem; of. § 4. 

4. Prove that 

5. If u is a solution of Laplace’s equation, 

0*2 gz* “ ’ 

show that 

,6. If M is a solution of Laplace’s equation, show that 

V a 

7. If w const, is a solution of Laplace’s equation, show that 

|^d-S<0. 
On 

8. Let A, B, C be three functions which, together with the deriva¬ 

tives that enter below, are continuous throughout the interior of a 

region V of space. Let V be any region contained withir. V'; let 

8 refer to the boundary of V, and let a, /3, y be the direction angles 

of the inner normal of 8. In order that 

cos«-f- Pcos/8 -I- CcoBy)d8 = 0, 

it is necessary and sufficient that 

^ as ^ 0 

dx'^dy^dz^ ' 

Btove this proposition. 
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10. 8tokM*s Ilietmm. Let P, Q, a&d P be l^uee fanoMaQa of 

(x, y, z) which, together with their first partial derivatives, are 0<m- 

tinuous throughout a region V of space, and let 5 be a surface lying 

in V and bounded by the curve C. Let a, /ff, y be the direction 

.angles of the normal to S, chosen in a suitable sense. Then Stokes’s 

Theorem asserts the truth of the equation: 

-/ = f Pdx + Qdy + Rdz, 

where the line integral is extended over C in a sense dependent on 

the choice of sense for the normal to S. 

The theorem is not true in general for unilateral surfaces (cf. infra), 

* but it holds for all two-sided surfaces. We begin by proving it for 

a restricted case, and are able then with ease to pass to the general 

case. 

A Restricted Case. Let 8 be given by the equation 

(1) z = <o{x,y), 

where <o, together with its first derivatives, is continuous within 

and on the boundary of a region S' of the (*, 3/)-plane, and where 

S lies within the region V. It is furthermore assumed that S' is 

the kind of region considered in § 4, to which Green’s Theorem is 

applicable. 

Consider the integral 

(2) Pdx + Qdy + Rdz, 

takMi in that sense along C which corresponds to the positive sense 

of description of the boundary F of S'. This integral can be ex¬ 

pressed by a line integral over F as follows; 

(3) / (^P 4“ Rw,^ dx “1”(Q "b Rto^ dy. 

For, the value of dz anywhere on S is 

dz=ia)idx -f- lotdy, 
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and aioag O, dx and dy are the same as along T.* 

Let ? (x, y)=P [«, y, <» (x, y)] + B [*, y, <o (*, y)] (aj (x, y), 

y)= Q[x, y, <»(*, y)] + B[ar, y, 0) (x, y)] «.,(a^ y). 

3%eD (3) becomes 

(4) dx -j- O dy. 

This integral can be written in the form (§ 4, C): 

15) dS'. 

The integrand of the last integral is seen to have the ralne: 

(6) ^ - -Pa + (Qa - iJa)-! + (^i - -P»)o.a, 

where the subscripts against the letters P, Q, B indicate derivatives 

taken on the hypothesis that (x, y, z) are the independent variables. 

Let the positive sense of the normal to 5 be defined as that for 

which the direction angle y is acute. Then 

cos a = — <i»i/A, cos^ = —(uj/A, cos y= 1/A, A = VI 4- cof + c4. 

Henee'the integral (5) can, by the aid of (6), be written in the form 

—A)+(S2 — Qj) Acosa+(P, — Bi) A cos/Sjd-S'. 

* A fuller explanation of this point is as follows. Let C be given in the para¬ 

metric form: 

O: x=/(\), y = z = 

Then the integral (1) becomes 

(P*' Qy'-t 

But from (1) 
Z> = WiX' + I*jV'. 

Hence this integral has the value 

jR«v)x' -(-(Q + 

On the other band, the curve r is represented by the equations 

r: *=/(X), V = «W. 

Hence the hist integral is the same as the integral (8). 

0^X£1 



UNK INTEGRAIiS AND GREEN’S THEOREM 239 

TMb has the same -ralue as the siixface integral, 
over 3: 

But this is precisely the integral that stands on the left of 

Equation I., and hence the theorem is proved for this case. It is 

to be observed that' the positive sense of C, the inner normal to G 

regarded as the bounding curve of 3, and the positive normal of 3 

are so oriented to each other as the positive axes of *, y, and -a 

respectively. 

An Invariant Property. It will be shown in Chap. XIII that, if 

the coordinates are transformed to any new system of Cartesian axes, 

provided merely that a right-handed system does not go into a left- 

handed system, the integrands of both the line integral and the sur¬ 

face integral in I. will preserve their form. Thus 

jB—: 
dk ^dk dX dx’ 

and similarly, the integrand of the transformed surface integral 

will be* 

But Equation I. is invariant even of a reflection, as z' =— z, 

if R’ = — R ] for then y'=w — y and the sense of C is reversed. 

Suppose now that we have an arbitrary bounded surface, 3. Then 

we can cut it up into a finite number of pieces, S^, St, •••,.each of 

which, referred to a system of Cartesian axes properly chosen, will 

come under the case just treated. Hence Stokes’s theorem will hold 

for such a piece, no matter how the axes are chosen, and so we may 

refer all the pieces to the same axes. 

Write down, then, Stokes’s theorem for each of the pieces Si, St,--, 

and add the results together. For the kind of surfaces we most 

readily think of, like a piece of a sphere or a paraboloid, we shall be 

integrating along each of the cuts once in one direction and once in 

the opposite direction. So these contributions to the sum on the 

• These facts can, however, be proved here directly by the student, by merely 
writing down tiie most general equations which represent such a transformation 
(Ana^tc Oeometry, p. 682 and p. 694), and then computing the original inte¬ 
grands In terms of the new variablea 
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dgki-liaiid aide wilT sumtil one another, and ire shall hare remaining 
merely the line integral over the complete boundary of 

S, taken in the proper sense. 

This sense will depend on which normal to we have 

chosen as positive. Having made this choice at a 

single point, we can determine it at all other points by 

the method of continnity. Think of the surface as a 

material surface, and think of a thumb tack as placed against it, the 

shaft pointing in the right direction at a single point. Allow the 

thumb tack to slide about on the surface. Then the proper sense for 

the normal will be uniquely determined at all other points. Such a 

surface is called bi-lateral, as having (wo sides. 

UnUaterdl Surfaces. But there are surfaces which do not have this 

property; as was first shown by MSbius. Take a rectangular strip 

of pajmr and bring the ends together, allowing A and B to fall, not 

on C and D, but on D and (7 respectively. 

Then the Thumb tack can be slid on the 

surface, —say, along the long central 

line,—so as to come back to the starting 

point reversed in sense. This makes trouble for the direction angles 

«, /3, y of the surface integral. 
On the other hand, although this surface can readily be cut up into 

pieces Si, S^, ••• of the kind desired and a positive sense for the 

boimdary be chosen for one of them, positive senses cannot be as¬ 

signed to the others so that the integrations along the cuts will all 

cancel. Try it. 
Such a surface is called unilateral, for it has but one side. If a 

painter agreed to paint only one side of the surface, the Union would 

interfere. 

The Final Condition in Stokes's Theorem. We are now in a posi¬ 

tion to complete the statement of Stokes’s Theorem. It is, that the 

surface in question be bilateral. Then the proof goes through as 

set forth above. 

An Application. Let F be an arbitrary linearly simply connected 

region of space, and let C be any simple closed curve drawn in F. 

Then C can be drawn together continuously, always remaining simple 

and wholly within F, into a curve (7j lying in a sphere K contained 

in V. Let P, Q, and B be three functions which, together with the 

derivatiTes that enter below, are ccmtinuous throughout the whole 

interior of F, and let 

Fiq. 68 
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dy fe ** ’ dt dx' dx dy 

Consider the integral 

Pdx Qdy + Bda. 

Its value mil be the same for all intermediate positions of C. Eor, 

two near positions form the complete boundary of a bi-lateral sur¬ 

face contained in V, and hence this integral, extended over both 

positions of C (but in opposite senses) vanishes by Stokes’s Theorem. 

Let Af be a diametral plane of the sphere K. Then Ci can be 

deformed continuously toward its projection on M. Again, the 

‘value of the integral remains constant. The limiting position of 

Cl is, however, a closed curve F (no longer simple, in general) which 

lies in M. But for a closed plane curve, simple or not, the integral 

vanishes by § 5. Hence the original integral = 0. 

Finally, the integral 

/ Pdx + Qdy Bdz 

has the same value for all paths connecting (a, b, c) with (z, y, z) 

and lying in V, and hence it defines a single-valued function, u, in V. 

Thus all the theorems of § 8 are established. Stokes’s Theorem 

owes its importance, however, chiefly to those cases in physics, in 

which the surface integral has a meaning. 

11. Plow of Heat. Imagine a slab of copper 2 cm. thick, with 

one side packed in melting ice at temperature u = tio = 0°, and the 

other side exposed to steam, 

tt = Ui = 100°. A flow of heat 

within the slab results, and if 

the above surface temperatures 

are permanently maintained, Fio. gj 

the flow will tend toward a 

limiting condition, in which the lines of flow are the perpendiculars 

to the faces of the slab, and the isothermal surfaces are the planes 

parallel to these faces. Moreover, the temperature will fall off 

steadily, as a point P traces a line of flow. If x denotes the dis¬ 

tance of P from the surface of temperature ui, and a, the thickness 

of the plate, then 

(1) » = -(Ml -Kfl)?. 
CL 

u,=100 

«n=® 
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All tliis ia plausible enough, but how do we hnoto it is so, and 

what do we mean by heat, anyway ? To answer the second <][ues- 

tion first, we think of heat as an imponderable substance which can 

flow freely in a conductor and which can be measured in calories,* 

as sugar in pounds. And now the above statements about heat, 

including equation (1) above and equation (2) below, are no more 

and no less than physical laws, — the facts of nature we take for 

granted. 

To go on: Consider a plane region S, of area A, situated in tbe 

slab and parallel to the &,ces. Let Q be the quantity of heat which 

traverses this surface in one second. Then obviously f Q is pro¬ 

portional to A, to the difference in temperature of the faces, and in¬ 

versely to the thickness of the plate: 

Q cc A, % —Mo, 
a 

(2) Q = * 
a 

where AT is a physical constant, the ^ecijic conductivity. 

Kext, let the plane area S be oblique to the faces, making an 

angle 6 with them. Then the amount of heat, Q, which traverses 

the surface in one second will obviously be the same as that which 

traverses the projection, A cos $, of on a face, or 

(3) Q = A'^^LrJfs^cos^. 
a 

The Kormai Derivative. Consider the normal drawn to 5 in the 

sense of the flow. Let n be its length. Then it is readily seen 

that 
du 

dn 
cos 9. 

ox 

Tor Upi = Up", Ax = An cos 9, 

Am _ A_m 

An cos 9 Ax ’ 
Am ■= Up> — Up = Up" — Up, 

and it remains merely to take the limits. 

* By a calorie is meant the quantity ot beat required to raise one gramme of 

water one degree centigrade (the initial temperature being 16°). 

t Bach statement is a physical law. “ Obviously ’’ means merely that these 

laws are easily accepted. 
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From (1) we find: 

^ — <*0 

8x a 

On combining this equation with (3) and eliminating du/dx by 

means of (4), we obtain: 

(«) 

This result embodies all the physical laws that have gone before, 

for from it we can deduce both (1) and (3). Moreover, it states 

these laws in terms of what is going on in the neighborhood of P, 

and not in terms of the temperature at remote points. 

If the sense of the normal be reversed, Q will be replaced by its 

negative. 

12. Continuation. The General Case. Consider now an arbitrary 

steady flow. The lines of flow will be curved lines, forming a two- 

parameter family of space curves which just fill out the region of 

flow. These curves are obtained by considering the family of 

isothermal surfaces, 

(6) It = lifl. 

In the neighborhood of any point P within the region of flow, the 

situation is similar to that set forth in § 11, for the portions of these 

surfaces contained in the neighborhood of P look almost like planes, 

which are sensibly parallel to one another, and so the lines of flow 

are seen to be curves cutting these surfaces orthogonally. 

Let /S be a surface, open or closed, which lies in the region of 

flow. Cut S up into n pieces AiSi, •••, AiS„, the maximum diameters 

of these pieces being small. Then each of the pieces will look like a 

small piece of a plane surfacd, and it is physically evident that the 

amount of heat which traverses the fc-th region in one second will be 

approximately 

where the normal derivative is formed at an arbitrary point of that 

region. Thus the quantity, Q, of heat which traverses the whole 

surface S in one second will be approximately 

and the approximation will be closer and closer, the smaller the sub¬ 

regions, or 
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B 

Hua whole deduction has been heuristic. We have dwelt on the 

physical pictures and considered what it is reasonable to expect. 

To justify in this manner the final result, it would be necessary to 

make the physical assumptions sharper, in order to draw mathemati¬ 

cal inferences from them. After all that has been done, the final 

result is the equation 

(7) Q=-JjK^d8. 

It is, therefore, simpler, both physically and mathematically, now 

that we see what it is reasonable to expect, to begin at this end and 

lay down equation (7) as the one physical law. 

Unsteady Flow. In the case of an arbitrary flow an instantane¬ 

ous photograph of the lines of flow at one instant would be differ¬ 

ent from that at another instant.* Nevertheless, these lines do not 

shift abruptly, and for a short interval of time succeeding an arbi¬ 

trary instant the rate of flow across S is given approximately by 

(7), or 

^ s ^ 

where I approaches 0 with A<. Thus we have 

lim^ = -i^ = - 
At dt dn 

dS. 

Again, the reasoning has been heuristic. We have been shooting 

in the target; and now we can bring all the physical assumptions 

considered from the beginning into the one 

Phtsicai. Hypothesis. Jn the case of an arbitrary flow of heat, 

the rate at which heat traverses a fixed surface S is 

(8) K^dS. 
dn 

* Whereas in the case of a steady flow the lines of flow formed a two^aram- 

eter family of cnrves, the lines of flow in the general case correspond to the 
itkdlvidnal particles the substance at an initial instant, and thus form a three- 
parameter family. 
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We liaTe treated K as oonstant, and it is so for ordinary substanoes 

and moderate variations in temperature. The Hypothesis includes 

the case, however, that jE* is a continuous function of x, y, z, t. 

» 

EXERCISE 

Show that the lines of flow are given by the simultaneous system 

of differential equations: 

dx dy _dz 

du du du 

Sx dy dz 

13. A New Heat Problem. If a homogeneous substance be raised 

from the constant initial temperature to the constant final tem¬ 

perature «,, the quantity of heat required, Q, will be proportional to 

the rise in temperature and the volume: 

Q X “i-Mo. 

(9) Q=C(ui-u^)V, 

where C is a physical constant depending on the substance, the 

gpecijic heat per unit of volume. 

If, now, an arbitrary homogeneous .substance be raised from the 

continuous initial temperature % to the continuous final temperature 

Ui, the amount of heat required will be 

(10) ^ 
r 

as is shown by the usual procedure of the integral calculus. 

Consider an arbitrary flow of heat. Let the temperature, 

w =/(*, y. 

be t«o when t = and u, when t = <„ + At. The quantity of heat 

required to produce this change is given by (10), where for Q we 

now write AQ. 

On the other hand, 

Ml —«o = At/,(a;, y, z, <,-(-tfAt), 0 < ^ < 1. 

r r rcmx, y, z, q-« ao dv. 
Hence 



CALCUMJS 

, Wbm At approaches 0, the integral approaches the integral of the 

linutang function, as will be shown under the proof of Leibniz’s 

Buie. Thus 

At dt 
dV. 

We can, however, assemble all our physical hypotheses into the 

single one: 

Physical Hypothesis. If in the case of a flow of heat the temper¬ 
ature is a continuous function of x, y, *, t, and if this is true of du/dt, 

too, then the rate at which the heat is accumulating in a given region, V, 

is given by the formula: 

(11) dV, 

where the specific heat, C, is either a constant or a continuous function 

Of X, y, z, t. 
From (11) equations (9) and (10) follow at once. 

14. The Heat Equation. Consider an arbitrary flow of heat, in 

which the temperature, together with the partial derivatives* of 

the first two orders, is continuous in x, y, z, t. Let V be an arbi- 

traiy sub-region contained in the region of flow. Then the rate at 

which the heat in V is increasing is given in two forms, namely, by 

equation (8) of § 12 and by (11) of § 13. Hence 

(12) 

where n refers to the inner normal of For ordinary substances 

and moderate variations in the temperature, K may be assumed 

constant. 

By Green’s Theorem, § 9, we have: 

Hence 

J J J W 

///[ 

dV 

O^-KCsu 
dt 

-ffi dS 

* It is not necessary to extend this requirement to all these derivatives ; hut 
tbe loss in generality is unimportant. 
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The integrand of this last integral is continuous throughout the 

irhole region of floTr. Hence it must vanish at every point of the 
region: 

C^-K/^u = 0. 
dt 

For, if it were, for example, positive at a point within the region, 

it would be positive throughout a certain neighborhood of P. But 

the integral of a positive function cannot be zero. 

We thus arrive at the differential equation which governs the 

flow of heat in the general case: 

(13) 

It is a linear partial differential equation of the second order with 

constant coefficients. 

Steady Flow. We can now define a steady flow as one in which 

the temperature at any given point is independent of the time. 

From (13) it follows that the temperature, in the case of a steady 

flow, will satisfy Laplace’s Equation: 

(14) — , ^ _ Q 
dx^ By^ dz^ 

Conversely, if the temperature satisfies Laplace’s Equation, then 

from (13) du/dt = 0, and the flow is steady. 

A necessary and sufficient condition for a steady flow is the fol¬ 

lowing : if F be an arbitrary sub-region contained in the region of 

flow, then SQ/dt = 0 for this region. 

The latter property might be taken as the definition of a steady 

flow. 

EXERCISE 

If K is variable, but continuous, together with its partial deriva¬ 

tives of the first order, show that the heat equation becomes : 

Here, C may also be variable; it will be continuous. 

15. Flow of Electricity in Conductors. The flow of electricity in 
a conductor is mathematically identical with the problem of the flow 

of heat just discussed. On replacing throughout the word heat by 

electricity, and the word temperature by potential, the foregoing treat¬ 

ment applies to the electrical case. 
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How. Coasider a solid ojliader of art^ 
tiary orosS'Oeotiim, S, out off by two' planes perpendicular to its ele- 
xnents. Let the ends be insulated, and let the remaining surface be 
maintained at prescribed temperatures which shall not change with 
the time. In particular, the surface temperature shall be a con¬ 
tinuous function, and it shall be constant along each element of the 
cylinder. 

The limiting flow, i.e. the steady flow which corresponds to the 
surface conditions, will be one in which the lines of flow all lie in 
planes parallel to the bases; and the lines of flow in one of these 
planes project on the lines of flow in any other plane. 

Thus the flow is completely described by the flow in one of these 
planes. Let the (x, y)-azes be chosen in this plane. Then u does 
not depend on 2; hence d^u/dz'^ = 0, and Laplace’s Equation reduces 
to 

(1) da? dy^ 

Equation (8) of § 12 reduces to 

provided that the altitude of the cylinder is unity. 
A necessary and sufficient condition for a steady flow, when K is 

constant, is that 

(3) = 0 

for every sub-region, the integral being extended over the complete 
boundary in the positive sense. Equation (3) follows from Laplace’s 

Equation, and conversely; § 4. 

Mow of Electricity. A two-dimensional 
flow can be realized as follows. Consider a 
piece of tin foil. Let the edge be connected 
with a thick piece of copper, and let one pole 
of a battery be connected with the copper; 
the other, with an interior point of the tin 
foil. Then a flow of electricity in the tin 
foil will be established, and since the resis¬ 
tance of the copper is negligible, while that 
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M tbe tin foil is not, ilie edge of the tin foil 

will be at constant potential.* 

Again, two segments of the boundary of a 

piece of tin foil can be connected with two 

thick pieces of copper, and these in turn with 

the poles of a battery. A flow of electricity 

is thus set up in the tin foil, in which the 

other two edges of the latter are lines of flow. 

17. Continuation.- The Conjugate Function. Equation (3) of § 16 
can be written in the equivalent form: 

(4) + 

This form suggests that we consider the function 

(6) + 
J cy cx 

(»,») 

and that we take the region S as simply connected. This integral 

is independent of the path of integration, as follows from (4), or 

from the direct application of the test of § 7: 

dy dx ’ dy* csfi ’ 

the latter condition being fulfilled since u is harmonic. 

From (6) we infer the following relations ; 

du _ Sv 

dx dy’ 

du _ dv 

dy dx 

A pair of functions, « and v, which are continuous, together with 

their first partial derivatives, and which satisfy equations (6), are 

said to be conjugate. More precisely, v is conjugate to w, and — u is 

conjugate to v. 

• The same flow could be realized by taking the region <S as a non-oonduoting 
surface and covering it on both sides and along the edge with tin foil. On con> 
necting the two poles of a battory with points of the tin foil above one another, 
the flow in question ensues. 

Fia. 61 
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Xhe curves v ^ 
omdly. For, 

, const, are seen to cut the carres w 

du ■ dv~ 

dx 

du dv 

Sy 

ri 

const. ortho9> 

Thus the curves of the former family are the lines of flow; for, 

they cut the isothermals at right angles. 

EXERCISES 

1. If « and V are conjugate functions, and if they possess continu¬ 

ous partial derivatives of the second order,* show that both u and v 

are harmonic functions. 

2. Show that, if u and v are conjugate functions, they satisfy the 

differential equations in polar coordinates: 

8u 1 18u  8v 

dr r 0$' r dO dr 

8. Prove that Laplace’s Equation becomes, in polar coordinates: 

dr^ dr d(^ 

The equation may be written suggestively in the form: 

= 0. 

18. Theory of Functions of a Complex Variable. Equations (6) 

of § 17 are those which express the condition that a function of a 

complex variable: 

• (1) « =/(*)> 
z = x-\-yi, to = tt -I- vi, % = V— 1, 

should possess a derivative; cf. Chap. XX, § 11 

(2) D.w=fiz). 

Such a function,/(z), is said to be analytic. Since its real part,«, 

satisfles Laplace’s Equation, we have an unlimited source of har¬ 

monic functions. Thus 

* As a matter of fact, this condition is satisfied automatically ; but this is not 
tiie place to prove that theorem. 
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(3) M) =« s? 

is seen to bare a deriratiye, and hence 
f 

(4) M = — y*, v±= 2xy 

form a pair of conjugate functions. 

EXERCISES 

1. Show that any harmonic function which depends on r alone, 

but not on &, is of the form : 

M = c log r + c'. 

2. The isothermals of the function u of Question 1 are concentric 

circles. Show that, when the particular values iti, •••, «„ form 

an arithmetic progression, the corresponding values of r form a 

geometric progression. 

3. Discuss the conjugate family. 

4. Draw the curves u = const, and v = const, in the first quadrant, 

corresponding to the functions (4) above. 

6. Describe two cases of flow of electricity corresponding to the 

results of Question 4, and show precisely how to realize the flow in 

each case. 

19. Irrotational Flow of an Incompressible Fluid. The domain 

of ideas which we have just been considering — the physical pictures 

and the mathematical treatment — is closely related to that of a flow 

of a fluid in two dimensions. If the density, p, is constant as re¬ 

gards both space and time, the equation of continuity, Chap. XII, 

§ 9, reduces to 

(1) dx dy 

where X and T" are the components of the velocity at any point along 

the axes. 

The condition that the flow be irrotational is that a velocity 

potential, u, exist: 

and if the flow is to be steady, these derivatives must be independent 

of the time. 
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Fzom (1) iei:d (2) it foUovs that tt is harmonio; and conrerselj^ 

any hanaoaio function u, independent of t, leads through (2) to an 

iixOtational, steady flow of an impbnderable fluid of constant density. 

Eeferences. The formal transformations based on Green’s Theo¬ 

rem are treated in much detail in the opening chapter of Watson 

and Burbury’s Electricity and Magnetism. The flcrw of heat is well set 

forth in Fourier’s Analytic Theory of Heat, translated by Freeman, 

See also the references at the dose of Chap. XII and Chap. XX. 



CHAPTER XII 

TRANSFORMATION OF MULTIPLE INTEGRALS. EQUATION OF 
CONTINUITY 

The definite integral of a function of a single variable was defined 

as the limit of a sum, and the existence of this limit was based on 

the geometric evidence of the area under a curve. It was possible 

to extend the method to double integrals; but for triple integrals 

geometric intuition broke down, since a four-dimensional space 

would be needed. 

By means of the new formulation of the arithmetic definition of 

the definite integral, to which we now turn, the above gap relating 

to triple integrals is readily filled, and, on the other hand, the 

theorems concerning iterated integrals and change of variables 

admit simple treatment. 

1. A New Definition of the Definite Integral. Let f{x) be a con¬ 

tinuous function of a; in the interval 

a 

Fro. 62 

Let the axis of a: be divided up into segments, each of length 1/2*, by 

means of the points * = Z/2", where I is any whole number, — posi¬ 

tive, negative, or zero. Denote those points which lie actually 

within the interval (a, 6) by ajj, •••, (where x*_i < x*), and let 

Xo, X, be the end-points, or the next points outside the interval: 

' xo g a < Xi, < 6 g 

Next, form the sum 

-S, = 2)/(»i) 

where xj[ is any point which lies in the interval Xj,_i ^ x ^ and 

in which /(x) is defined, and 

Aa^ * — x*_i; |5 = lor2; j = v — lory, 

tVe. p may be chosen at pleasure to be either of the numbers 1 or 2 ; 

and q, independently of p, to be either of the numbers v — 1 or v. 
25S 
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» 

We ptooeed to show that approaches a limit when n increases 

withoat limit, and we shall define this limit to be the definite integral 

of tie function /(x) from a tab: 
i 

f / 
lim <S, == I /(x) das. 

Let Jfjt, be respectively the largest and the smallest values of 

the function /(x) in the interval x*., ^ aj g ®* (or in that part ot 

the interval in which /(x) is defined). Then 

m*g/(x')g Ifj 

and 
y—1 y-1 

^ AXjj Ax* g ^ Jif* Ax*. 

And now the proof consists in showing that each of the extreme 

sums in the double inequality approaches a limit, and that these 

limits are equal. We will restrict ourselves for the present to the 

case tbat/(x) > 0. 

Consider the sum 

(1) i: 3ft Ax*. 
When n increases by 1, each interval (x*_i, x*) is bisected, and the 

M’s corresponding to the two halves are at most equal to the former 

3f*. The modification in statement for the extreme intervals, (x^,, a^) 

and (x^_i, x^), is obvious. 

Hence the value of the sum (1), if it changes, decreases. But it 

will never be less than 
m(b — CL), 

\ 

where m is the minimum value of /(x) in the interval (a, b). 

It follows, then, that the sum (1) approaches a limit; Introduction 

to the Calculus, p. 391. Denote the value of the latter by A. Then, 

obviously, we also have 
y~l 

lim ^ Ax* =B xl 

Next, form the sum < 

(2) .gm*Ax*. 
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Analogoaa oonsideratioas show that this sum likewise approaohes a 

limit,* which we will denote by B: 

lim X ma Aa?a = B, 

Since 
K-l 

k^k • 

1 

,AfjAaSt — 5)miAx* = wi*) Aas* ^ 0, 

it follows that A B. We wish to show that only the lower sign 

can hold. 

To prove this, it is sufficient to show that, when a positive 

quantity c has been chosen at pleasure, it is then possible to find an n: 

n = W, such that 

(3) Af* — Bti < t 

for all values of A: in question. Obviously, relation (3) will then 

hold for all larger values of n. The proof of this theorem depends 

on the property of uniform continuity — a subject belonging to a 

more advanced stage of analysis; ef. for example the author’s 

Funktionentheorie, Vol. I, Chap. I, § 4. 

Thus the variables (1) and (2) approach one and the same limit, 

A, and hence /S’, approaches this limit, too, no matter how asi is 

chosen in the interval (r*_i, **). We define this limit as the definite 

integral of /(as) and write : 
6 

CoroUary 1. Law op thb Mean ; 
I 

Jf{x)dx^f{()ib-a), a<(<b. 

Here, ( denotes a point properly chosen within the interval (a, 6). 

* This result can, however, be deduced immediately from the theorem just 
proved. For, let a constant, C, be chosen greater than the greatest value of 
/(x) in the interval (a, b). Form the function 

F(x) = C-/(x). 

Then the sum (1), formed for F(x), has the value 

C(x,-Xo) - VmtAx*. 

Since this whole variable approaches a limit, and since its first term also 
approaches a limit, its last term must likewi8e.converge. 
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’ GorMury 2. 'J^c be any intermediate point, a <o <b, then 

t « • 

J*f(x)dx=:: J’f(x) dx + ^ 

« « e 

The proof of each corollary follows immediately from the defini 
tion of the integral. 

The Most General Law of Sub-Division. Let the points Xg, Xj, 

•••, x^, now be chosen arbitrarily, subject merely to the conditions 
that 

^ x^i-cb^ x„, lim Ax*, =0, 

where Ax^^ is the maximum Ax^ for the n-th sub-division. Let 

== Ax* = ^/(xl) Ax* ei/(x{) Axi + e*/(x,;) Ax,, 

«i, e, = 0,1. 

On the other hand, 

J.-1 ®* ^—1 

f /(x) dx = ^ f f(x) dx = ^/(xl') Ax*, x*.i g xi' S x*. 
c/ 

• » 

Hence * S„- ff(x)dx = ^ [/(a;',) - /(«*)] Ax* 
c/ S a 

»l * 

-h e,/(x;) Axi + ej/(x;) Ax, -J'f(x) dx 

“ 'f-I 

When « increases without limit, each term on the right ap¬ 

proaches zero as its limit, and hence S„ approaches a limit. The 

value of this limit is 

//(*) dx. 

*To be precise, we need here the further definition: 
e 

j'/(*)dx=0, 
a 

where e is any point of the interval (a, &). 
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It remains merely to remove the restriction that /(*) >0. If 

this condition is not fnlhlled, form the function 

<f>(x) =/(*) + C, 

frhere O is so chosen that ^(x) > 0. Since tj>(x) possesses an integral, 

it can now be shown without diflBculty that /(a?) also possesses an 

integral; that Corollaries 1, 2 hold for this integral, and that the 

general sum approaches this integral as its limit. 

2. Co&tianatioiL Mnltiple Integrals. The foregoing definition 

has the advantage that it admits immediate extension to multiple 

integrals. 

Double Integrals. Let iS be a finite region of the (*, 3/)-plane, 

whose boundary is made up of a finite number of arcs, each of which 

can be represented in at least one of the forms 

(1) y = <^(a:), x = m{y), 

where the function standing on the right-hand 

side is continuous throughout a certain in¬ 

terval, 

a ^ a: g 6, or a ^ y g 63 

Let/(®, y) be a function continuous within and on the boundary of S. 

We next divide the plane into equal squares by the lines 

i j 
2-’ ^ 2»’ 

where i and j, independently of each other, range through all integral 

values. 

Consider (a) those squares which lie wholly within S \ and (5) 

those squares which contain, in their interior or on their boundary, 

at least one boundary point of jS. Let (x^, be an arbitrary point 

of 8 lying within or on the boundary of one of these squares. Form 

the sum 

where 88), denotes the area of the square (and is the same for all 

squares, namely 2"*") and the summation must include all the squares 

of Class (a) and may include all, some, or none of the squares of 

Class (6). Then 5, approaches a limit when n becomes infinite. The 

value of this limit is defined as the value of the double integral of' 

/(*, y) extended over the region iS: 
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lim <8, 

To prove the theorem, let denote reBpectirely the largest 

and the smallest value of/(as, y) in a given square. Form the sums 

There the first sum is extended to all the squares of (a) and (b), and 

the second, to-the squares of (a) only. 

The further development of the proof follows precisely the lines 

of the earlier case, § 1; and the two corollaries hold for the present 

case. Corollary 1 now taking the form: 

// f{x,y)dS=f{i,ri)A, 

where (^, ij) is a point of 8, and A denotes the area of S. 

Finally, consider the most general law of sub-division of 8. Let n 

sub-regions be chosen as follows; (t) each sub-region shall conform 

to the general requirements imposed on the original region 8, and 

no two sub-regions shall over-lap each other; moreover, no sub-region 

shall lie wholly outside of 8; (u") let S' be any region which, to¬ 

gether with its boundary, lies wholly within 8. Then for all values 

of n from a definite point on (n ^ .dT) the sub-regions shall cover all 

points of the region S'; {Hi) the longest diameter of any sub-region 

corresponding to a given value of n shall approach 0 as its limit 

when n becomes infinite. 

If, now, (**, yj) be an arbitrary point of the A^th sub-region, and 

8.8^ denote the area of the region, the sum 

le=^ 

will approach a limit as n becomes infinite, and the value of this 

limit is the double integral: 

Triple IrUegrcda, The treatment here is precisely analogous. We 

beg^ with a finite region V of space, whose boundary is made up of 

a finite number of pieces of surfaces, each piece being capable of 

representation in at least one of the forms 

a ^ (as, y), y = ^(®, a), as = «(y, a): 
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wlieie the function on the right* is oontinuous within and on the 

boundary of a suitably chosen region in the (x,y)-plane, or the 

(x, *)-plane, or the (y, *)-plane. Let /(x, y, z) be a function continu 

ous within and on the boundary of V. 

We next divide space into equal cubes by the planes 

z 
k 

2"' 

where t, j, k, independently of each other, run through all integral 

values. Those cubes which lie wholly within V shall belong to 

Class (a); those which have at least one boundary point of F in their 

interior or on their boundary shall belong to Class (b). 

Consider a cube of Class (a) or Class (6), and let (x^, y^, z*) be a 

point of F which lies within or on the boundary of this cube. Form 

the sum 
• = z*)AF*, 

where AF* denotes the volume of a cube (and is the same for all 

cubes, namely, 2-®"), and the summation is extended to all cubes of 

Class (a), and to some, all, or none of the cubes of Class (b). Then 

this sum approaches a limit as n becomes infinite. The value of the 

limit is defined as the value of the volume integral of /(x, y, z), ex¬ 

tended throughout F: 

//> , y, *) dF. 
V 

The proof is given, as in the earlier case, by means of the sums 

2;^Af*AF„ 2;-m*AF*. 

Next, the two corollaries are deduced; and, finally, it is shown that, 

for the most general law of subdivision, the corresponding sum ap¬ 

proaches a limit, and that the value of this limit is the triple 

integral; 

**) ffy> 

3. Iterated Integrali and the Fundamental Theorem. Let a region 

S of the (x, y)-plane be bounded by two curves: 

(1) = y = «>(*), 

where 0(x), are both continuous in the interval n g x g &, 

and oi(x)<0(x) if a<x<6. 
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In case i>>(a)<0(a), the segment of the line forirhioh 

«)(a)<j?<0(a) 

shall also belong to the boundary; and similarly if ia(b) < 0(5). 

Let/(®, y) be continuous within and on the boundary of S. 

By the iterated integral of /{x, y), extended over the region S: 

is meant the following. Let x be given any value in the interval 

a g a; g & and then held fast Let 

The value of this integral depends solely on the value of x which 

was chosen; i.e. it is a function of x. That the function is continu¬ 

ous is shown in Chap. XIX, § 1, 

This function is now integrated over the interval (a, &), and the 

result is the iterated integral we set out to define. 

Evaluation of the Double Integral. Let the plane be divided into 

squares as in § 2, the axis of x being divided at the same time into 

segments as in § 1; and let be one of the points of division of the 

a^axis, which lies within the interval (a, b). 

Consider the squares of Class (a) which have the line as = a;* for 

their left-hand boundary. Add to these two rectangles as shown in 

the figure; t.«. the left-hand boundary of the rectangle shall have an 

extremity on the boundary of S. In particular, there may be no 

squares for a given k, and then we have just one rectangle, with 

the two ends of its left-hand boundary on the boundary of iS. These 

squares and roctangles shall be taken as the sub-regions for the 

double integral 

tLa point at which f{x, y) is to be formed being defined as 

follows. 
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Ooasidei^the square or reetao^ie whose horizoataJ sides Jie in the 

lines 
y = y = y,+i- 

Form the integral 

n+i 

/(®« y) dy. 
f' 

By the Law of the Mean its value is 

{yM-yi)f{^k, yl); yi<y\< vm 

The point of this square or rectangle at which f{x, y) is to be formed 

shall be j/',). 

The sum whose limit is the double integral can then be written in 

the form 

(2) 

where, for each fc, I is to run through the values corresponding to 

the squares and rectangles which abut from the right on the line 

x = x^; and then these sums are to be added for k = l,2, etc. 

On the other hand, consider the value of one of the above sums 

for a given k. Since 

• - y,), 

we have 
n+i r, 

y!) A-S*, = A** ^ J/(**, y)dy = Jf{x^, y)dy 

where Fo =" (®*)» F, = n (x*). 

Hence the total sum for all the squares and rectangles is 

(3) 2 y) ^y- 

The limit of this sum is the iterated integral (1) above. 

We are now in a position to prove the equality of the double in¬ 

tegral and the iterated integral: 
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Thi Boms (2) aad (S) are equal for all yalues of n. As » beoomes 

infinite, &e sum (2) approaches the double integral, the sum (S) the 

iterated integral, and the proof is complete. 

The boundary of such a region 8 as that of S 2 may be cut by a 

parallel to the axis of y in four or more points. It is sufficient, how¬ 

ever, for the needs of practice to restrict ourselves to such regions S 

as «m be cut up into a finite number of regions, Si, St, •••, each of 

which is of the type assumed in this paragraph. Por any such 

region 8, the double integral can be expressed as the sum of the 

iterated integrals taken over the regions Si, 8^, 

The result here established is the Fundamental Tkeorem of the 

Integral Calculua, as stated in Chap. Ill, § 4. The first proof given 

in that earlier chapter, § 3, was based on geometric intuition. The 

second proof, § 17, was arithmetic, and it set forth the leading ideas 

of the argument, but it did not profess to carry through all the 

details. The present proof supplements the second one and leaves 

nothing to be desired in point of rigor. If the new definition of the 

definite integral, as given in §§ 1, 2, is once adopted, this proof is 

even simpler than the former proof. 

Triple Integrals. The treatment admits of immediate extension 

to triple integrals, and thus we have a proof of the Fundamental 

Theorem in this case, namely, that (Chap. IV, § 2) 

y,z)dV = J*Jy> 

where 8 is the region of the (x, y)-plane whose points are the pro¬ 

jections of the points of V, and the region V is bounded by the 

surfaces* 
Zo^ioix, y), Zi = a {x, y). 

EXERCISE 

Extend the treatment to a quadruple integral: 

JJS 
stating arithmetically the meaning of the geometric analogies. 

* There is here a certain farther restriction on V, which is not embarrassing 
ip practice, since die projection S of Fon the (», ^)-plane must now confonn 
to the restrictions imposed on S in J %, 
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4. Traaafem»tiw.^ tlM SoablA Litegral. Let the region S of 

$ 2 be transformed on a region @ of the (u, v)-plane by means of the 

equations: 

(1) 
^ = 9{x>y) f x = 6{u, v) 

v = h{x,y) [y = Lr(u, v) 

the transformation being required to be one-to-one and continuous. 

Moreover, besides the existence and continuity of the first derivatives 

of g and h we require that the Jacobian 

^ £it 
Sx dy _ d{u, v) 

^ d(x, y) 

dx dy 

be different from zero at all points of S. The functions O, H will 

then also have continuous derivatives of the first order through¬ 

out ®, and their Jacobian will likewise be different from zero at 

every point of For, J'= 1/^, where 

8{u, v) 

Consider the double integral 

(2) 

Into what does this go when the transformation (1) is performed 7 

Surely not, in general, into 

If F{u, u)d@. 

where /(*, y) = F(u, v). 

For, the latter integral is 

lim5)F(wt, vjA®*. 
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t 

^0% ft 8X1^1 TOgioQ'm exaiftpl«, a BiMlate Si^aare,—goes 

over bj (1) into a small region of S, whose shape is in general disK 

tortod, and whose area is not an equivalent infinitesimal,—as is 

shown by the simple example: 

'u = 2x fajaa^U 

V — y ] y as B 

Here, AS = 2 A5. 

We can get some light, however, on what to expect by taking A® 

as a small square, bounded by the lines 

u = Ug, M = t<g + Am, v = Va, e = Vo + Au. 

These lines go over in general into curved lines in the (*, y)-plane, 

and thus we have a curvilinear quadrilateral which, when the square 

is small, will look much like a parallelogram. 

We can approximate to the area of the latter as follows. Recall 

the formula for the area of a triangle whose vertices are at (a\„ yg), 

(®i» yOi (®*i Vi)’ Aside from sign, it is 

®o 

Xi 

yo 

yi 

Vt 

1 

1 • 

1 

The area of a parallelogram with three of its vertices in these three 

points will be twice as great. 

Let (a!b, yo) correspond to (mo, Vd); 

(®ii yi) = (®o + A.*, yo + A.y) correspond to (ug + Am, Vo) ; 

(*s» ys) = (*b + A,®, yo + A.y) correspond to (mq, % + Av). 

We have, then, as the area SS of the parallelogram, three of whose 

vertices lie at three of the corners of the curvilinear quadrilateral: 

SS 

®6 y# 1 

ag + A,* yo + A.y 1 

asg + A.® yo + A.y 1 

®o yo 
A.® A.y 

A.® A.y 

Since A® = AuAv, it is clear that 

1 

0 

0 

A„® A.y 

Am Am 

A,® A.y 
Av Ab 

liia.^ss lim 
A® 

A,® 

Am 

A.® 

A-y 
Am 

A,y 

du du ^ d(x, y) _ ^ 

dx dy ^(w,«) 

Am Ab 



TKANSFOEMATION Of 34ULT1PLE INTEGEAUS 

Kow, it seems highly plausible geometrically that the acea iS-ot 

the parallelogram and the area /XS of the curriliaear quadrilateral 

are equivalent infinitesimals * ■, i.e. that 

Hence follows: 

or 

limM = l. 
AS 

y) 
d(u, v)* 

A-S' = 7'A@ + £A@, 

where { is an infinitesimal. 

We are now in a position to answer the question proposed at the 

start: What does the double integral 

/(*, y)dS 

become when referred to the transformed region @? Divide the 

(u, u)-plane into small squares, as in § 2. To the fc-th square in 

whose area shall be denoted by corresponds a curvilinear quad¬ 

rilateral in S, whose area shall be denoted by AS^. If, now, (xj, y*) 

be any point of the latter region, and (u^,v^) the corresponding 

point of the former, then 

AS, = J,Ae, + (,AB„ 

where denotes the value of J at (w*, r*). Hence 

(3) y*) = 

Let n become infinite. The limit of the left-hand side of (3) is 

the double integral (2). To the limit of the sum on the right we 

may apply Duhamel’s Theorem, setting 

then lim = lim * = 1. 
«=» 

* This is, indeed, a fact; hut a direct proof, based on infinitesimals, cannot 
easily be given, and so we agree (a) to accept the geometric evidence in all its 
Buggeetiveneas as making reasonable the true result; (b) to make our pro(fi de¬ 
pend <m other and simpler analytic methods, cf. $ 6. — Throughout this paragraph 

tft, and the expressions for J 5 in terms of determinants should be replaced 
Sy their numerical values. 
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Hdnoe lilait of this sam is the mt.me as 

lim ^SS 

We have, then, the final result, that 

(4) ,y)dS = If F{u, v) 1 J (u, v) 1 d@. 

This result is true; but the proof is incomplete, in that we have 

not shown that the hypotheses of Duhamel’s Theorem are fulfilled. 

We have adduced geometrical evidence which makes highly plausible 

the correctness of these hypotheses; but that is not mathematical 

proof. In the next paragraph we will give a proof. 

5. Continuation. Proof by Line Integrali. It is possible to ob¬ 

tain an expression for the area of the region S by means of the 

theorems of Chap. XI, § 4: 

(1) 
S f? • 

If in (1) we set P=y, the eqiiation yields as the area. A, of S: 

(3) A= — J' ydx. 

If in (2) we set P=y, Q = — *, we have 

(4) A = —-jydx — xdy. 

Let the boundary, C, be represented in parametric form by the 
equations : 

(5) * = ®(A), y = 4'(A), OgAgl. 

Then (3) gives , 

(6) 

Consider what this int^ral becomes when we make the trans- 

formation (1) of § 4. First, the boundary Oof S goes over into the 
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houndaiy S of whose analytic representation is obtained by sub- 

stitutu]^ the values of a and y from (6) in the first pair of equations 

(1) of S 4. Let the result be written in the form 

(7) u*.<^(X), v = ^(X), 

where ^^(X) =g'{<l*(X), ♦(X)], ^(X) == h [<t.(Xh ^rCX)}. 

Thus in equation (6) we have: 

y=zH{u, v), 
dx_dO , . dG 

dX cu dv 

or 

(7) 

where the upper sign holds when S is described in the positive 

sense; otherwise, the lower. 

This last integral can be transformed as follows. Write equation 

(2) for the region @: 

(8) 

and set 

® tt 

'15 = 1^, 
cu 

£i = H 
dO^ 

dv 

Then 
aiP dO._dOdH dOdH d(G, H) _ j, . 

dv du du dv dv du d(u, v) ’ 

Hence, 

or 

(9) J{u, v) d@. 

Since A is necessarily posijtive, we see that a transformation (1), 

§ 4 has a positive Jacobian when a positive description of C leads 

to a positive description of 5; otherwise, a negative Jacobian. 

Stated as a theorem the result is as follows:' 
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(CaaBoaBic. cam Aa/the region 8 is represetUed by the dtnMe 

^eUigmlo/' tft« numerical valve of the Jacobian J(u, v), extended over 

JJ «(«.«) 

It is now easy to obtain a rigorous deduction of equation (3)^ § 4. 

Since ^ ^ 

we need only apply the Law of the Mean to this integral, and we 

where (u*, v*) is a properly chosen point of the A>-th sub-region of ®. 

If, tlien, we form the function / at the corresponding point (**, y*), 

/(**, y,) hJS, = F(u„ v,)\Jin„ '«*)! A@». 

Hence 

or J’“ J' f q- e- d- 

6. The Iterated Integral. The evaluation of the double integral 

(1) M, v)J(u, v)d<B 

by means of the iterated integral is immediate. Its value is 

p F, e ut 

(2) «, e) J{n, v) dv or dv F{u, t>) J{u, v) du. 

Hence we have a new evaluation of the original double integral: 

s 

IS) Jff¥.V)SS~Jfiu, .)||g^ dv. 

This last formula admits a new and important interpretation. In 

S 4 we interpreted equations (1): ‘ 

<4) r 
Ustsg{fc,y) 

hix, y) 

[»==(?(«, ») 

iy=i jr(M,o) 
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a» a transformation of the poiiUa y) of 8 into tfte pointe (tt, v) of a 

region & of the (u> v)-plane. ' 

It is, howeyei, possible to put a wholly different interpretation 

on these equations. We may regard the point (x, y) as fixed and the 

equatione (4) as assigning to it new coordinates, (u, v). Thus if 

x = r cos <f>, y = r sin <f>, 

we should most naturally interpret these equations as transforming 

the coordinates of the point from Cartesian axes to polar coordinates. 

From this point of view, then, we introduce a system of curvilinear 

coordinates by means of equations (4), the functions g and h satisfy¬ 

ing all of the conditions imposed at the beginning of § 4; and we 

arrive at a new iterated integral and the evaluation of the given 

double integral contained in (3). 

Example. Let us apply the result embodied in formula (3) to ob¬ 

taining the iterated integral in polar coordinates. Here, 

and 

dx dy 

dr dr (sos4> aintf) 

dx d^ 

dtft d<f) 

— reixith rcos<f> 

F{r, il>)rdr, 

the familiar formula. We observe that the factor r which presented 

itself in the earlier deduction is nothing more or less than the 

Jacobian. 

EXERC(SES 

1. A system of curvilinear coordinates in the first quadrant is 

given by the two families of confocal parabolas: 

=a—2vx +y^ = 2vx + v‘. 

Compute the moment of inertia about the origin, of the region 8 

bounded by two parabolas from each family. 

2. Find the centre of gravity of 8, Question 1. 

3. The area of a curved surface is given by the integral. Chap. Ill, 

811: 
A 
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' Xf soiface is given parametrioaJly, cf. $ 8; Formulas (3), (4)« 

(6) and Chap. VI, § 1, Formulas (9) and (14), lien secy=»± X>/^'r 

Show that, on transforming from Hie Cartesian coordinates (x, y) to 

the cnrvilinear coordinates (X, ft) we have: 

A Ddkdfi,, 

9 

7. Sztsnraon to Triple Integrals. Let the region F of §2 be 

transformed on a region S of the (u, v, to)-8paoe by means of the 

equations 

(1) 
“ =9(*, y.») 

e =h(x, y, z) 

10= l(x, y, z) 

x= 0{u, V, w) 

y= H{u, V, to) 

* = L(u, V, to) 

where the same conditions of continuity are imposed as in § 4, and 

where, moreover, as there, the Jacobian shall be different from zero 

at every point of F: 

j(x,y,z)c= 

Then will 

d(u, V, to) 

y, *) 

J(u, V, w) = y, g) 
d{u, V, 10) 

also be different from zero, for J = 1/j. 

Consider the volume integral 

(2) f/J- f{x, y, z) dV. 

Into what does it go when the transformation (1) is performed ? 

Our guess from analogy would be that 

(3) /// /(x, y, z) dxdydz . F{u, V, to) y>^) 
8 (u, V, to) 

dudvdWf 

and this is right. 

A first proof by infinitesimals and Duhamel’s Theorem can be 

given precisely as in the case of double integrals, § 4 A six-sided 

figure is cut from Fby the surfaces 

U = V^ V = Vf, 10 = tOo, 

« = Wfl 4- All, V = Oq + At), to = lOo + Ato, 

and this figure looks very much like an oblique parallelepiped when 

Au, At), Ato are all small. Its volume, AF, therefore, is seen to differ 



TRANSFORMATION OF JJTJLTIPLB INTEGRALS !271 

only by an infinitesimal of higher order from the volume SV of the 

corresponding parallelepiped, whose four vertices lie at the points : 

Vt, *o). (ai) 4- A.i», yo + Ky, *0 + A.2), 

(a% + A,®, yo + A.y, 2o + A.z), (a?o + A«®, yo + A„y, «« + A,,*). 

±8r= 

A„® A.y A„z 

A,® A,y A.z 

A„® A„y A,^ 

the formula: 

A,® A„y Au2 
Au Au Au 

A,® A,y A z 

Av Av Ay 

A„® Ky A z 

Aw Aw Aw 

Au Av Aw. 

The product AwAuAw represents precisely the volume AS of the 

corresponding region of the (m, v, w)-8pace, and so we have 

±iiinir=gfe y>A. 
AS o{u, V, w) 

Hence AF* | Jj AS + f AS, 

when ( is infinitesimal, and so, by Duhamel’s Theorem, 

F’(m, V, w)lJ(u, V, w) I dS, q. e. d. 

The incompleteness in the proof lies in the fact that we cannot 

give a rigorous demonstration that the hypothesis of Duhamel’s 

Theorem ; 

+£*«*! 

is fulfilled. The geometric picture makes highly plausible the re¬ 

sult, but we cannot be sure without proof that the geometric picture 

we see always represents the facts. 

8. Oontmnation. Proof by Surface Integrals. The theorems of 

Chap. XI, § 9 yield the following expressions for the volume of the 

region V. On setting C = z ia (2), we have: 

a) -// z cos y d8. 
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Seocmdly, in B^oatkm 1. of tliat same paragraph, let ii a 

Bsejjr, C«sa*; th^ 

(2) V=i J'J’ (x cos a >i-y coa/3-t-g COB y)dS. 

Let the boundary of V, i.e. the surface 8, be represented para- 

metrically by the equations: 

<3) x = «>(X, ^), y = 'it{k,p)y * = n(X, ^), 

where the functions on the right are continuous, together with their 

first derivatives, and not all the Jacobians 

(4) 

are zero at any one point; of. Chap. VI, § 1. Let 

(5) D==y/jl+M+jl 
Then the area of a portion of S is given by the formula, cf, § 6, 

Ez. 3: 

(6) 5= r rDdkd^L, 

extended over the corresponding region it of the (X, ^)-plane. 

Moreover, the direction cosines of the outer normal of S are given 

by the formulas 

(7) cos a ■ 
D' 

C08/8 = ^, cos 7 = ^. 

provided the parameters X, ft are suitably chosen. 

Thus formula (1) can be written as follows; 

where the integration is to be extended over the whole surface 8. 

We proceed to transform this integral to the (m, v, w)-space and 

the surface @ which is the image of 8. A parametric representation 

is obtained for @ by substituting in the first set of equations (1), f 7, 

for x, p, z the values given by (3); 

u = g\*ik,^), *(k, ^), 0(X, ^)|, 0= etc. 

liet the result be written in the form 

W to =1U»(X, /l). 
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The Jaeobiao whi<^ enters in (8) is seen to have the foUolring 
value: 

8x 
8X dX 

a 8u dv ,fydw 

■ ^dx *ax *ax 
das h. 

dfi Cfi. vfx vfi. Cfi CfL Cfi 

8(g, H) d{v, w) d(G, H) d(w, u) d(0, H) d(u, v) 
d{v, w) d{X, fi) 8(w, u) S(X, c{u, v) d{X, /i) 

On substituting this value in (8) and recalling formulas (4), (6), (6), 
and (7), we have: 

0 

wherey denote the angles made by the outer normal of @ 
with the axes of u, v, lo respectively, and the ± sign must be so 
determined as to make the right-hand side positive. 

This latter integral can be transformed into a volume integral by 
means of Equation I. of Chap. XI, § 9, written for the (u, v, w)- 
space : 

8v 
cos a' -f 8 cos /3' -f (£ cos y') d®. 

Let 8(0, H) 
d(v, w) ’ 

58 =L 8(0, H) 
d(w, u) ’ 

(5 = iy 
d(u, v) 

Then 

and hence 

ag j gg ^ gg _ d(0, H,D 
du dv dw a (u, V, w) ’ 

C rn 
J jj J \ 

d». 

From this point on the analysis is precisely like that of § 6 for 
double integrals and hence formula (3) of § 7 is established, or: 

F(u, V, w) 8(!e, y, z) 
d(u, V, w) 

dSS. 
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> 2%« InUgrod. Thia lut istegr&l coa be evaltmiked ia the 

ttsoal way by means of the iterated iategral, and hence we have a 

new evaluation for the original integral by means of an iterated 

integi^: 

F(u, v,w)\J(w, V, to) 1 dw, 

where @ here denotes the projection of the points of 13 on the («, v). 

plane. 

As in the case of double integrals, so here we can give an entirely 

new interpretation to equations (1) of § 7, considering them not as 

transforming the point (x, y, g) into a new point (u, v, to) of space; 

but rather as assigning to the point (x, y, z), which now remains 

fixed, new curvilinear coordinates, (u, v, to). 

Example. Let the Cartesian coordinates (x, y, r) be replaced by 

^spherical coordinates; cf. Analytic Geometry, p. 684: 

a!=i rsin4>cos6, y = rsinsin6, si=srcos^, 

where 0 denotes the longitude and <^, the co-latitude. Then 

and we have the usual formula; 

, y, z)dV= 

S «! 

F{r, $) r® sin <j> dr. 

a .Sg 

EXERCISE 

1. Obtain the iterated integral in cylindrical coordinates 

a5 = rcos<^, y = rsin<^, z = z-. 

F{r, <t>, z) rdr, 

and explain the double integral. 
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9. Ai^pUeatUm to Hydivdyiiamioi and Baitieity. Consider any 

three^mensional material substance, a region rg of which is changed 

in size and shape, and thus comes to occupy a new region, t. For 

example, think of the currents of air in the atmosphere. Let ro be 

a sphere 100 ft. in diameter, situated half a mile above the earth’s 

surface at the instant of time t = to 1 ^nd think of what has become 

of this sphere 30 seconds later. Let t denote its new form, quite 

different, in all probability, from a sphere. But we assume that no 

discontinuity has taken place, so that the points of t are related in 

a one-to-one manner and continuously to the points of tq. 

Let p denote the density at any point of t, and po, the density at 

the corresponding point of tq. We will assume that both functions 

are continuous. In general, p wil} not be equal to pp. We shall 

presently find, however, a relation between them. 

The total mass of air enclosed in r must be precisely the same as 

the total masi in tq. Hence we have the equation 

(1) 

Let the Cartesian coordinates of any point of t be (a, b, c), and the 

coordinates of the corresponding point of to be (ap, 6p, Cp). Then 

(a, b, c) are connected with (op, 6p, Cp) by three equations such as 

(1), § 7. 
ao = ff («> ^ c) a = G (op, bp, Cp) 

bp=zh{a,b,c) b = H(op, bp, Cp) 
Cp = 1 (o, 6, c) c = L (op, 6p, Cp) 

Let 
9(Op, bp, Cp) 

The integral on the right of (1), when transformed to the region 

Tp, takes on the value: 

T TO 

From (1) and (2) we infer that 

or 

(3) //M Po) drp = 0. 



OALC0WJS . 

73ke Tofma wKoUy arM^raij. We oaa imdeistaad, theo, 

hy r« asj sub-region of tbe original -r^, and equation will still 

bold for ^s new region. From this we can infer that the integremd 

must vamsA at every jxnrU of the original ro: 

/jJ—po = 0. 

For, suppose that this function of (a|),ho,q,) were positive at some 

point, A, of the original tq. Then we could enclose Jl in a new 

region, ri, at every point of which pj — would be positive, since 

this function is continuous and so cannot abruptly change sign. 

But here is a contradiction, for the integral of a positive function is 

necessarily positive, and not zero. Similarly, if pj — p^ were nega¬ 

tive at any point of the original r^. 

We have thus obtained a relation which holds between p and /># at 

every pair of corresponding points, namely: 

(4) pj^ PO) where . 
e(a„,6o,co) 

This is one form of the Equation of Continuity, — one of the basal 

theorems of hydromechanics. 

Blaeticity. We have taken as our physical picture a gas, de¬ 

formed in an easily imaginable manner. But the same analysis 

would obviously apply to a piece of rubber in the tire of an automo¬ 

bile, or a piece of steel in the drive shaft. Equation (4) holds 

equally in all these oases. 

10. Flux across a Surface. Consider a fluid in motion. If we fix 

our attention on a region B within the region in which the flow is 

continuous, then at any given instant, t = ti, each particle of the fluid 

is moving with a definite vector velocity, and the totality of these 

Tbctors constitutes what is known as a vector field. 

We wish to find the rate at which the mass is passing across a 

given surface, S, (open or closed) lying in B. This is known as the 

flux across S. 

A Suggestive Special Case. The simplest case is that in which the 

fluid is of constant density, p, and is frozen, and, moreover, is mov¬ 

ing without rotaticm, and with pure translation. Here, the vector 

velodty of each point is the same as that of every other point, and 

does not change wi& the time. Let this vector be S; let its length 

be V (aBlIJj); and let its components along the axes be tt, v, ta 
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Forthemore, l«t 2 be a plane siufaoe, of area a, whose normal, 91, 

has fhe direction angles «, y. 

The amount, AJf, of fluid which crosses S in seconds is here 

readily visualized. It is the mass of an oblique cylinder, whose base 

is S and whose altitude is the projection 

of S At along the normal 91: 

(1) A3f =s p (V COB t) a At. 

Since 

V COS t = M cos a + v cos /3 + to cos y, 

we have 

= p{u cos a + V cos /3 + to cos y) <t. 
Fio. 66 

\Xf gjif 
The flux is here constant, and lim-= 

At dt 
Hence 

(2) 
m 
dt 

= p (m cos a 4-» cos + to cos y) a. 

The General Case. Eetuming now to the general case, consider a 

small piece of the region 2, of area Aor. This piece will look almost 

like a plane, of approximately the same area, A(r; and, moreover, the 

vector velocities of the particles of the fluid near this piece will all 

be nearly equal to one another, so that the vector velocity ® of one 

particle, taken at random in 2, will represent very closely the vector 

velocities of all its neighbors. Hence the rate of flow across Atr is 

given approximately by the formula 

p (« cos a + V cos /3 + w cos y) A<r; 

the normal to 2 being taken at the same point as the particle in 

question. 

If we divide the whole region 2 up into n patches, assume an ar¬ 

bitrary point in each patch, denote the area of the patch by A*-*, and 

form the sum 

(3) Af />*(«» cos a* -b v* cos -t- w* cos y*) Ao*, 

this sum ^1 represent very closely the quantity A3f of the fluid 

which has crosssd 2 in the At seconds following the instant t (At also 

being assumed small). Hence the average rate of flow across 2 in 

the At seconds, or Ailf/At, will be nearly equal to the sum 

W p* (“* y*) ’ 
■* 



mad the approximation will be better, the amaller the patiihdB and ike 

amaUer At are taken. The limit of the above sum, 

(S) lim 2) P* (“* “* + % CO® A + Wfc ccMJ y^) Aou 

▼hen the largest diameter of any patch approaches 0 as its limit, 

and At also approaches 0, will be precisely the rate of flow, or Jlum, 

aero«) S: 

(6) cos a + v cos d + w cos y) do. 

Critique of the Foregoing. We have made a succession of positive 

statements, without attempting to give any other reason for their 

correctness than the physical picture. “ Realize the physical situa¬ 

tion and be convinced that these things are so,” is the spirit of the 

text. Certainly, this is altogether properly the first step toward 

recognizing the reasonableness of the result, (6). But what are the 

physical laws we are assuming ? Is the situation like that in which 

the area of a curved surface was formulated as an integral: 

A= J'J'secyd^. 

the final formula, — the integral itself, — being the simplest physi¬ 

cal axiom to lay down ? Or is it rather as it was m the case of 

fluid pressure, where physical laws of such simplicity that it seemed 

pedantic to state them led to the determination of the pressure: 

P = X -t- c) d8, 

as a mathematical theorem ? 

The answer is as follows. The physical picture of the flow, which 

we have thrown on the screen of our imagination, though highly 

suggestive, is not suflSciently refined, in the absence of further elabo¬ 

ration, to render a mathematical deduction possible. It is precisely 

at this point that the infinitesimals of Leibniz, so dear to the heart 

of the mathematicians of the eighteenth century and to many a 

physicist of today, befuddle the situation, for they seem to go be¬ 

yond the point we have reached above and to deliver a proof of (6), 

where our methods recognize their limitations. 

It is, however, an error to attribute to them magical and mysti¬ 

cal powers. They cover with a smoke screen the inherent difficul- 

ties; they do not surmount them. 
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A proof of (6) by infiaitesimals is inoonTenient, not for mathe¬ 

matical, but for physical reasons. It is not possible to frame a 

simple statement of physical facts which will yield the double in¬ 

equality of Duhamel’s Theorem, or its equivalent. The student has, 

then, two courses from which to choose. He may say: “ The physi¬ 

cal evidence is already highly convincing, though not of the order 

which we regard as ultimate. I prefer to accept the result and to 

go on and see what can be gotten out of it.” This is the stand of 

a man who respects himself scientifically, but who does not wish, 

for the time being, at least, to study further the mathematical- 

physical situation. 

The other course is to attempt a proof of (6) on the basis of clean- 

cut assumptions defining what we mean by a flow of a fluid. The 

proof is not a brief one; but the ideas and methods it involves, far 

from being artificial and developed for just this one case, are such 

as the student will meet again and again both in pure mathematics 

and in mathematical physics. For this reason a careful study of 

the proof will well reward the effort. 

One other word. We have considered a material fluid. We 

might equally well think of the substance as heat or electricity. 

Even more generally, the results apply to the case of any vector 

field (as in the Jlux of force across a surface in electricity or magnet¬ 

ism or gravitation). There may be a point function, like the density 

p above, given at each point of the field; or such a function may be 

absent: p = 1. 

11. Continuation. Proof of the Formula. Definition of a Flow. 

We must first define what we mean by the fiow of a fluid. Let 

be a region contained in the fluid at time t = Consider an arbi¬ 

trary particle which initially (t.c. when t = fg) is at a point (a, 6, c) 

of R^. Let {x, y, z) be the point at which this particle has arrived 

sinuous. And now the region is carried over, in a one-to-one 

manner and continuously, into a region ij, which changes with the 

time, but for a given value of ( is altogether definite. In other 



CAMJULUS 

w(Hid«, eqnatioaa (1) can be eolved for a, b, e: 

m 
a = r(x, y, z, t) 

b = *(*, y, z, t) 

0 = *(*, y, z, t) 

vbece (a;, y, z) is any point of the region B which corresponds to the 

yalne of I in question, and the functions F, 4>, 4' are continuous. 

Finally, we require that the functions f, <l>, ij/ have continuous first 

partial derivatives in all the arguments, and that the Jacobian be 

always positive: 

(3) > 0 throughout B^. 
3(0, 6, c) 

From these conditions it follows that the functions F, 4>, ^ also 

have continuous first partial derivatives. Moreover, 

(4) |£a, 6, ^ Q throughout B. 
d(x, y, z) 

For, the Jacobian in (4) is the reciprocal of that in (3); cf. Chap. V, 

|§ 12,13. 

I7ie Problem. We wish to determine the rate at which the fluid 

is traversing a given surface, open or closed, which lies in B. More 

precisely, if AJf denotes the mass of the fluid which crosses this 

surface in the interval of time from t= to i + At, then we 

wish to find the 
T AM 
lim-, 

At 
or 

dt ■ 

The Surface S. Consider a piece, S, of this surface, and require 

ihat 2 can be represented in the form 

(6) z = ,o{x,y), 

where a is continuous, together with its first derivatives, throughout 

tiie projection 5 of 2 on the (x, y)-plane. 

Consider the instant t = ti and the succeeding interval 

ti g { g <1 + A. 

At any instant, t=ar, of this interval, there will be a certain surface 

of the particles coincident with 2, and these will pass on as t in¬ 

creases, reaching a definite final position when t = 4- A. We will 

uapose further conditions to make sure that no two members of 

thia one-parameter family of surfaces ever have a point in common. 
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This can be done by requiring that the tangent to tbe path of any 

particle which at time t = ti is on S, be not tangent to %; and, 

secondly, by suitably restricting h. 

Let us formulate this condition analytically. The components, 

u, V, w, of the velocity of any particle along the axes at any instant 

are the time derivatives of its coordinates, or 

(7) u ==fi(a, b, c,f), v = ^4(0, b, c, t), w = i/»4(o, 6, c, t). 

These can be taken as the direction components of the tangent to 

the path of the particle. The direction components of a normal to 

S are 
(0j(x,y), <a2(x, y), —1. 

For a particle at (x, y, *) on 2, when t = we must then have 

(8) U<ai +V<t>i — w ^ 0, 

where «, v, w, as given by (7), are formed for that point (a, b, c) of 

Jig which corresponds to the above point (», y, z) of 2 at time t = ti. 

The expression on the left of (8) can be regarded as a function of 

the independent variables (x, y) in S, and since it is continuous and 

different from zero, it will be either positive throughout S or else 

negative throughout S. 

The Region 91. We now have the physical picture of a three- 

dimensional distribution of the fluid which has passed across the 

surface 2 in the interval of time (ti, -h A), and which, at f = -|- A, 

is spread out throughout a region 3? of space, bounded in part by 2- 

Is this physical picture justified by the hypotheses above laid down? 

This is purely a mathematical question, to the treatment of which 

we now turn. 

It is convenient to represent the points of 81 by means of the 

following system of curvilinear coordinates. Let the Cartesian 

coordinates of a point of 5 be denoted by (A, /i). We thus have a 

simple system of curvilinear coordinates on the surface 2, whose 

points {x, y, z) are represented by the equations 

(9) x = X, z = u>{\,n). 

As the curvilinear coordinates (X, it, r) of a particle in 81, whose 

Cartesian coordinates are (®, y, z), we now choose the coordinates X, 
It of the point of 2 through which it passed, and the time (= t of its 

passage. The expression of x, y, z as functions of X, ft, r, according 

to the above definition, is obtained as follows: (t) the point (o, b, c) 
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o£ ^ e(»»«epoadiQg to (its, y, z] of K is gir^ bj toe equations 

(10) 
\=f(a,b,c,T) 

/I = ^ (a, 6, c, t) or 

a{\, fi)= h, c, t) 

a=s ^^[X, fA, «(A, ijl), tJ 

b => *[X, n, <a{k, /i), r] 

c = ♦[A, /t, w(A, fi), t] 

(t’j) toe values of a, b, c tons obtained are substitated in (1), and t is 
S6t ^ A : 

(11) 

x= f{a, b, c, «1+ h) 

y = <l>(a, b, c, tx + h) 

z = tli(a, b, c, ti +h) 

We wish to show that the Jacobian 

(12) j = 

at every point of % when t = and A = 0; for it then follows from 

the implicit function theorem, Chap. V, § 12, that, when h is suitably 

restricted, equations (11) define a region 91 such that, if (x, y, z) is 

an arbitrary point of 91, these equations admit a unique solution, 

(A, ft, t), where A, /x, t are continuous functions of (*, y, z) in 9i, and 

moreover J will not vanish in 91. 

To compute J, combine equations (10) and (11), thus obtaining 

toe following: 

(13) 

sc — A = /(a, b, c, <i + A) — /(a, h, c, t) 

y — ft = i>{a, b, c, ti + h)—tf>{a, b, c, t) 

,z — «b(A, /*) = ^(a, b, c, ti + h) — ^{a, b, c, r) 

It is now easy to compute the nine partial derivatives which enter 

in the Jacobian (12) for Hut particular values r = ti and A = 0. In 

computing the six of these derivatives that are taken with respect 

to A and fi, it is allowable to set t = <i and A = 0 before the differen¬ 

tiation. The values of the remaining three, with respect to r, are 

also computed with ease, and we have, as the final result: 

y>g) 
d(X, ft, r) 

1 0 -ft(a, b, c, <i) 

TB^l 0 1 — J 

«0i(A, ft) <i(*(A, ft) 

= u(a, b, c, tj) <i>i(A, fi)-hv(a, b, c, #i) (tfs(A, ft)- w(a, b, c, ti). 

itoit *bi« is precisely the left-hand side of (8), and hence is nowhere 

zeto on X 
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The Determination of 6.M, We are now in a position tq determine 

the mass of the fluid contained in 91. It is :* 

(14) M= pdxdydz = g) 
d(K, p, t) 

dKdftdr, 

where 9i' denotes the region of the space of the Cartesian coordinates 

(\, jn, t) which corresponds to 91 by the transformation (11). 

The volume integral can be evaluated by means of the iterated 

integral, and hence 
<,+» 

(15, 

a $i 

Applying the law of the mean, we have: 

fi+* 

0 (^) th r) 

y. g)~| 
8(A, /i, t)_t=*i+« 

Since i/'(X, fi, t) is continuous, the last factor differs uniformly from 

. ^(jg, V> g) 
^a(A, p, t) 

by a quantity { which is infinitesimal with h. More precisely, the 

largest value that | {| has for any point (X, p.) in S and for a given 

h approaches zero with h. 

If, then, finally, we write M as AAf and h as A<, we have 

(16) 

Hence 

(17) 

—= r rfo 

J J L ^(■^>/*>’■) 
a 

T**, 

dS. 

lim A3f 

At ' 

dM 
dt 

y, g) 

^ (^» ^i) 
dS. 

But the value of the Jacobian J" on 2 has been shown to be 

Consequently 

(18) 

U <01 + 

dM 
dt 

<oi ‘4” ViOj tc) dSt 

* Save possibly as to sign. For a discussion of this question of. below. 
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tlSiiS int^ral eaa be wi-itten as a surface iutegial ta^en over 

S, and thus we hare the familiar result: 

(19) 
dM 

dt 
u cos a + v 008 /8 + w cos y) dj, 

where a, fi,y are the direction angles of a normal to the surface. 

Hie Signs. In formula (14) there should be a minus sign before 

the last integral if J < 0. Moreover, we have not said in (19) which 

normal is to be chosen. Nevertheless, (19) is true in all cases, no 

matter which normal be chosen, provided we take A3f as an algebraic 

quantity, considering A3f as positive when the direction of flow at 

any point of S makes an acute angle with the normal at that point, 

and negative in the other case. 

The Excited Case. It remains to consider the ease that 

(20) . A = M«i>i + wii)j — tc = 0 

on X This may happen either through the velocity vector being 

tangent to 5 or through the velocity vanishing on S. 

Suppose the points of the first kind lie on a curve C and those of 

the second k nd, on a curve C": 

Cl A = 0; (w, V, w) =j6: (0, 0, 0); 

C'l A = 0; u = 0, u = 0, w = 0. 

It might at first sight appear as if we could consider a portion 2 

of 2 not reaching up to either C or C' and, applying formula (19) to 

it, allow 2' to approach 2 as its limit. Then the surface integral 

(19), extended over 2', would approach the surface integral extended 

over 2 as its limit, and we should have the result we wish to es¬ 

tablish. But there is a fallacy in this reasoning, which consists in 

inverting the order in a double limit. 

Let AJf' be the quantity of the fluid which flows across 2' in At 

seconds and let AM" be the quantity which flows across the re- 

m^der of 2 in that time. Then the limit we wish to 'determine is 

8t tu*o At At j dt dt 

If now we let 2* approach 2 as above, it is true that dM'Idt ap 

proaches the limit given by formula (19). But 

dM dM’ . dM" 
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jod irhy flhooid this last limit be 0 ? la other m»ds, why sboold 

s'*s dt 0f\s'*s ) 

It is this point which requires proof, and the proof can be given by 

direct appraisal of AM". 

Let the curve G' (which may consist of several pieces) be em¬ 

bedded in one or more slender strips, Sf Let C also be embedded 

in one or more slender strips, and denote the part of these strips 

which lies outside Si by Sj. Denote the quantity of fluid which 

flows across Si and Sj in Ai seconds by A Mi and AM^. 

To obtain an appraisal for AMi, let V denote the largest value of 

the velocity which any particle, traversing a point P of Si at time 

t = T intermediate between and A<, attains in the interval from 

T to <1 -I- A<. Replace A^ for convenience by the former notation, h. 

Then the particles which traverse the point P in the interval of time 

from <1 to <i -t- A will lie in a sphere about P, of radius FA. 

Let P sweep out Si, carrying such a sphere with it, and let the 

region of space swept out by the sphere be denoted by U\. Then I7i 

is of the nature of a shell, encasing Si and of thickness about 2 Vh. 

Its volume will be approximately 2 FA.4i, where .4i is the area of Si. 

It remains to show, with all rigor, that this volume is less than 

2FABi, where is a suitably chosen constant. This proof can be 

carried through without difiBculty, and is left to the student. Thus 

lAM,]<2FABi. 

An appraisal of AAfj can be obtained as follows. Consider a par¬ 

ticle of the fluid which passes a point P of Si at any instant, t = T, 

of the interval from ti to ti -t- A. Let 8' be the greatest angle which 

its path ever makes with the tangent plane at P during the interval 

from T to <1 -f A, and let V be its greatest velocity in this interval. 

Let 8 and Fbe respectively the maximum values of S' and V, as P 

sweeps out Sj. Then Si can be so chosen that 8 will be arbitrarily 

small. It is clear that those particles which pass a given point P 

of Ss in the interval from to fi A will lie between two cones 

whose axes are in the normal to S at P and whose semi-vertical 

angle is ^ tt — 8. No particle will depart from P by more than FA, 

and each particle will remain in the region B between the above 

cones and within a co-axial cylinder of radius FA. The part of S 

within this cylinder will also lie in .S, if A is suitably restricted. 
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Koiir,^xedbtaDoe of tiie most remote point of M from 2 is obvionsly 

iess than 2 Vh tan S, except when P is near the edge of Sj; and tins 

exception can be conveniently removed by extending ^ slightly, to 

form a region ^ of area At. 

, If, now, we construct a sphere of radius 2 FA tan S about P as 

centre, and allow P to describe caTr3ning its sphere with it, a 

region (7* of space will thus be swept out, the volume of which is 

approximately 
4^jFAtanS, 

and it follows from the evaluation of the volume of Ui in the earlier 

case that the volume of Uj is less than djBjFAtanS, where ^ de¬ 

notes a suitably chosen constant. Thus 

I AJfj j < 4 JSs tan 8. 

We see, then, that Si, Sj can be so chosen that and 

AJir,/At remain numerically as small as one likes for all values h 

that are positive and small. Hence dM"/dt does approach 0, and 

the proof is complete. 

It is possible that the locus A = 0 consists, not of curves C and O', 

bat of whole two^imensional regions. The above proof applies, 

however, to these cases without modification. 

The result, namely, equation (19), is independent of the choice of 

the coordinate axes. Hence it holds for any bilateral surface which 

can be cut up into pieces, each of which, when referred to properly 

chosen axes, can be represented in the form (6). 

18. The Equation of Continuity. Consider an arbitrary sub- 

region, F, lying in the substance, the flow of which is defined 

above. The quantity of matter, M, in F is given by the integral: 

where p is computed, at the instant t in question, for each point 

(a>, y, z) of the region F. 

The rate at which M is increasing at this instant will be given, 

then, by the equation: 

¥=///!-- 
fi being a function of (x, y, z, t). 
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On the other haad, 1h.e rate at which Af is increasing is the rate 

at which matter is flowing into V from without across the surface, 
8, of F, and thus is given by § 11 as 

(3) 
ot 

uooaa + v cos /3 + to cos y) dS, 

where a, P, y are the direction angles of the inner normal.. 

By Green’s Theorem, Chap. XI, § 9, L, the right-hand side of (3) 
has the value *; 

From these two values of dMjdt we infer that 

I ^ 1 0. 
[ dt dx dy dz J 

Now, the integrand is continuous throughout the whole region of 

flow, and the region F is arbitrary. It follows, then, that this func¬ 

tion must vanish identically; cf. § 9 and Chap. XI, § 14 for the rea¬ 

soning here employed; 

(6) " h + + + = 
^ cx dy dz 

The result is known as the Equation of Continuity. It is a neces¬ 

sary and sufficient condition that nowhere in the region of flow is 

matter either generated or destroyed; there are no (three-dimen¬ 

sional) sources or sinks. 

.EXERCISE 

Prove the Equation of Continuity by differentiating equation (4) 

of § 9 with respect to the time. 

• We now make the farther assumption that the functions in (1), § 11 possess 
continuous second partial derivatives. 
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VSCTOR AHALTSIS 

1. Veoton and their Addition. By a vector is meant a directed 

line segment, situated anywhere in space. Vectors will usually be 

denoted by German letters or by parentheses ; thus a vector angular 

velocity may be written (u). 

Two vectors, 9t and ®, are defined as equal if they are parallel 

and have the same sense, and moreover are of equal length. We 

write: 

By the ahadute value of a vector a is meant its length; it is de¬ 

noted by I a |. 

Additum. By the aum of two vectors, 8 and ®, is meant their 

geometric sum, or the vector C ob¬ 

tained by the parallelogram law. 

We write: 
a -t- 8 = (j. 

Fro. 68 order that this definition may 

apply in all cases, it is necessary to 

enlarge the system of vectors above defined by a nul vector, repre¬ 

sented by the symbol 0. It may be thought of as a point, or as a 

vector whose terminal point coincides with its initial point; but 

this is not to be understood as meaning that it really was included 

in the original definition, only we were not shrewd enough to see 

it It is a new element, added to the original system by a new and 

independent definition. 

If 8 is parallel to a and of the same length, but opposite in sense, 

we write: 

a-t-® = 0, or »=s-a. 

Moreover, we understand by m%, where m is any number* a 

VBy member we mean an ordinary real number, positive, negative or seio; 
nttfonal irrationaL 

28S 
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Teetor parallel to X and | m |-times as long; its sense being the same 

as that of %, or opposite, according as m is positive or negative. If 

7»s0, then m# is a null vector:* OSbO. The notation am 

means m,%, and also 

aa+ 68 
means -r«+- -8. 

a+b 0+6"'0+6 

Vector addition obeys the commutative and the atsociative law of 

ordinary algebra: 
a + 8 = 8 + a, 

a+(8 + (£) = (a + 8)+(£. 
SuMraction. By 8 — a is meant that vector, I, which added to a 

will give 8: 

a+I = 8, I = 8- a. 

It is easy to see how to obtain £ 

geometrically: Construct a and 8 

with the same initial point; then 8 — 8 is the vector whose initial 

point is the terminal point of % and whose terminal point is the 

terminal point of 8. 

Fia. es 

Cartesian Representation of a Vector. Let a system of Cartesian 

axes be chosen, and let I, i, ( be three imit vectors lying along these 

axes. Let a be an arbitrary vector, whose components along the 

axes are X T, Z. Then evidently 

a = xi + Vi z t. 

If ^ 8 = X't+ F'i + Z't, 

ther a+8=(X+X)i+(F+ r)j+(Z+2r')». 

Also: |al=VX+ F» + Z*. 

A point in space, with the coordinates (x, y, *), may be repre¬ 

sented by the vector 
t = xt + yj + *l. 

If P, and Pj, represented by rj and t*, are any two points in space, 

the mid-point of the line segment joining them is given by the 

terminal point of 

*It is true that the symbol 0 is used in this equation in two dlflerent senses, — 
onoe, as the number 0, and again as a nul sector. This double use will not be 
found, however, to lead to oonfudon. 
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(1) 

where i is drawn from the origin as the initial point. 

Let n masses, mj, •• •, m., be located anywhere in space, and let ths 

coordinates of the Hc-th of these masses be {x^, z^). Then their 

centre of gravity is given by the terminal point of the vector 

(2) t = witi-f wiatj H-+ 
^ nil -f- m* + ••• + »i„ ’ 

the initial point being taken at the origin. 

Equations (1) and (2) merely compress into a single vector equa¬ 

tion what is expressed in ordinary form through three equations. 

Fcctors in Physics. Those physical quantities, like forces and 

velocities, which require for their expression, beside their magni¬ 

tude, their direction and sense, can be represented by vectors. We 

may mention accelerations, couples, angular velocities and momen¬ 

tum, and the vector moment of a force about a point. The law of 

composition is in each case the law of vector addition given above. 

But this is not true of all physical quantities that can be repre¬ 

sented by vectors. Thus any displacement of a sphere whose centre 

remains fixed is a vector quantity, but the displacement which arises 

as the result of two given displacements is not in general the dis¬ 

placement which corresponds to the sum of the vectors representing 

the given Replacements. 
I 

EXERCISES 

1. Show how to construct geometrically the sum of n testors, 

^ 

by means of a skew polygon, the generalization of Fig. 69. 

S. If n forces, acting at a point, are r^resented by the n vectors 

5i» Sii ”•> show that their resultant is represented by the vector 

S = , 

drawn from the point of application of the forces. 

3. If a couple in space is represented by a vector, show that the 

resultant fBtot n couples, 9Rj, •••> “ represented by the vector* 

SK = Splj 4- SDlj -f- ••• *4- 

vihit question Involves a knowledge only of the elementary theory of the 
eomposltlon and the resolution of couples in ^aoe. 
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4. Ttaee Teotors are said to be eomplanar* if there is a plane in 

spaee to which they are all parallel. Show that, if K, 8, S be three 

non-complanar vectors, any vector, X, can be written in the form 

X = l« + ma + ne, 

and that I, m, n are uniquely determined. 

6. If a[ = t/(r) + i^(r)+r^(0, 

show that a necessary and sufficient condition that 9 have a deriva¬ 

tive is that each of the functions /(t), have a derivative. 

Then, 
o, a = i/'(t) + i </>'(() +t </''((); d a = x», a dt. 

6. If m is a function of x, and a is a vector which depends on aj, 

and if each has a derivative, show that m a has a derivative, and that 

d(«ia) dm^ , _ da -5"-—‘=-—a + m-— 
dx ax dx 

7. If a point P move in any manner in space, its coordinates 

being given by the equations 

*=/(<). y = i>(t), * = 
where /, <^, xj/ are continuous functions of the time, having continuous 

derivatives, and if 

r = a;t + yj + zf, 

show that the vector velocity of P is represented by 

8. If /, ^ have continuous second derivatives, show that the 

vector acceleration of P is given by 

9, Show that the plane determined by the vectors r and r drawn 

from P (on the assumption that neither is a nul vector) is the oscu¬ 

lating plane. Thus the vector acceleration always lies in the oscu¬ 

lating plana 

*Two vectors are said to be coUinear, if there is a line in space to which the; 
are both parallel. 
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8. Xlt» Smbdr Pxodnot Beaide veetor additi<»i (S 1) iihera are 
two other laws * whereby two gires veetors determine a new qoan- 
tily,—^ namely, the acalar produet and the vedw product. The first 
of these laws is as follows. Let 3 and S be any two Teotors, and 
let the angle between them** bee. Then the number] a] ■ j 9 j • oosc 
is defined as their acalar product, and is written 8 99: 

5«« = l«|-|»l-C08f 

or =3 AB cos €, .d = J 91, £ = | 9 |. 

If one of the Teotors 9 or 9 is a nul veotor, the scalar product is 

defined as 0. 

Thus the scalar product of two vectors is not a vector at all, but 

is an ordinary number. Such numbers were called by Hamilton, 

the founder of quaternions, acalara because they can be represented 

by points on a scale, or graduated ruler. 

The scalar product vanishes (t) when one of the factors vanishes; 

(it) when the given vectors are at right angles with each other. 

The scalar product can be interpreted (or, if one will, defined) as 

follows. Let each of the given vectors be projected on a line par¬ 

allel to or coincident with one of them. Then the product of these 

projections, each taken with its proper sign, is equal to the scalar 

product in question. 

The commutative law holds for scalar multiplication (as it is also 

called) ; 
s%^ = sm. 

But the aaaociative law has no meaning, since the definition of 

scalar multiplication applies only to two vectors, not to a scalar and 

a vector. 

The distributive law, on the other hand, is true here: 

59(9 + C) = S99 S9(S. 

Kie proof can be given by projecting the vectors along the line of 

9 and observing that 

Proj (9 -f (E)= Proj 9 -f- Proj ffi. 

On applying the interpretation of the definition mentioned above, 

tiie truth of the theorem becomes apparent. 

*The word law Is here used in the sense of de/lnitien, not Vworem. 
** By tills Is mesnt the angle formed hy two rays which emanate from a 

p(^ and have respeeUvely the direction and sense of the given vectors. This 
sxtffis Is an unsigned qnantity and is taken between 0° uid IBO”, both inclusive. 
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ObrteMon Form ofOu Scalar Produd. Let 

% = All -t- Ati + Aft, 

Since 

at once that 

5U = 1, Sij = l, sn=>i, 
Sit = 0, SH = 0, Sii = 0i 

and since, moreover, scalar multiplication is distributive, it follows 

S 91© — AiBi -A-^B^ “1“ AfB^. 

The formula follows also from the definition, provided neither 9t 

nor 8 is a nul vector, since 

cos € = 
|a|.|©l 

EXERCISES 

1. Show that 
5aa = j aj*. 

2. If each of the vectors a and © has a derivative with respect to 

X, show that the scalar product has a derivative, and that 

—© + xSa —• 
dx dx dx 

8. If 0 is a unit vector, | a | 

Saa’=0, 

a 1, show that 

where a' = — • 
dx 

4. In the case of motion in a plane we have, on introducing polar 

coordinates, t aa tr cos ^ + trsin^. 

where r and are functions of the time. 

Deduce the usual formulas for the components of the velocity and 

the acceleration along the radius vector (produced) and perpendicu¬ 

lar to it, by considering the scalar products, Sta„ Sia^, jSro,» Sia^, 

where a, and denote unit vectors along i and perpendicular to it 

respectively, and the dots denote time-derivatives. 

5. Show that tiie equation of a plane which (t) goes through a 

given point. A, and (if) is perpendicular to a given vector % can 

be written as follows. Let O be a fixed point in space, and let ig be 
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the TBctov drawn from O %o A. Let F be any point of the plane, 

and let t be the vector drawn from O to Then 

/S«(t-ro) = 0- 

e. Show that the law of multiplication of determinants can be 

written in the form: 

A A A 5a®' 5a(£' 

-B. B» • A -Bi BS, — sm' 5««' 5 ©S'- 

c. Ci Ci C[ a d sm' 5C®' 5(S(E' 

3. The Yeotor Prodoet. Let S and S be any two vectors. Con¬ 

struct them with the same initial point, and complete the parallelo- 

vst« gramme, of which they form two sides. Then 

the ve(Aor product of a and ©, written Fa®, 

is defined as a vector drawn at right angles to 

the plane of the parallelogramme, of length 

equal to the area of the parallelogramme, and 

in a sense such that a, ®, and Fa® shall al¬ 

ways form a right-handed system, or else 

always form a left-handed system. Thus, when a Cartesian system 

of coordinates is introduced, we shall always have; 

Fio. 70 

/ 

y 

(1) FjJ = i, Fn = j, Fii = r. 

If one of the vectors is a nul vector, or if the vectors are collinear, 

the vector product is defined as a nul vector. 

The absolute value of the vector product is given as follows: 

(2) I Fa® 1 = .dBsiue, 

where c is the angle between the vectors. 

It is clear that two vectors, a and ®, drawn from the same point, 

can be replaced in a great variety of ways by two other vectors, 

a' and ®', lying in the same plane, without altering the value of the 

vector product. Thus in the figure 

(3) Fa® = FaiS = Fa,«. 
Moreover, 

or F(a-f m®)® = Fa©. 

Fas= F(ma)(- 

Fro. 71 where m is any number not 0. Hence 

one of the firotors in a product can be 

zeplaoed by a unit vector havii^ the same direction and sense, and 
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like direotioa and a^se of the other £a«tor will not thereby be 

dietnrbed. 

The Tector product vanishes (i) when one of the factors vanishes; 

(tj) when the two giv^ vectors are collinear. 

The commutative law does not hold; but we have 

(6) Fas = - vm. 
The associative law does not hold; for 

niFlii= ril = -i; but FiFUii = 0. 

On the other hand, the distributive law is true ; 

(6) 
+ (i) = Fa0 + F«tt, 

F(® 4- (E)a = F©a + Fsa. 

To prove this law, construct a, ®, ff, and 

® = a + from the same initial point, 0. 

The terminal points of the last three vec¬ 

tors form with 0 the vertices of a paral¬ 

lelogram, OBDC. Let this parallelogram 

be projected on a plane perpendicular to 9. 

The new quadrilateral, O'B'D'C, will also 

be a parallelogram. Hence if we denote 

the vectors represented by its sides and 

diagonal by 

(O'H') = (O'O') = S', (O'O') = 35', 

we shall have = 8' -f S'. 

Now, it is clear from the geometric construction that 

(7) F9© = Faa', F9S = FaS', Fa3) = F93)'. 

Moreover, as we will presently show, 

(8) Fa®' -1- Fas' = Fas)'. 

For, let the parallelogram O'B’D'C be rotated about the line of 9 

through 90“ so that CB', in its new position, will lie along Fa®'. 
Then O'C' comes to lie along FIS', and O'C to lie along FaS)'. 
Let the new positions of B', D', C be denoted respectively by B", 

B", C". Then 
Fa©' Fas' . Fa®' 

Fio. T2 

{CB") lai 

But 

Fas' 

{CB'')->t{CC') = {CD”). 

{CD")^ 
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J'rom ^8) a3»d (7) ve ooir infar'th« tmth of t^teoreot* 
It has bean tacitly assumed that no one of the reotors a, B, €, S> 

is a nul Teetor, and that neither S nor <£ is oollinear with a. In 

each of tibese excepted oases the trutii of the theorem is at onoe 

erident. 

The second form of the distributive law follows from the first 

form by virtue of the relation (6). 

Cartesian Form of the Vector Product. Let 

a — Ai i + j4j j + -dj f, 

8 = I + i + Bi I 

be any two vectors. From the distributive law and the relations 

(1) we infer that * 

Fas = (djB, - d,B01 + {d.Bj - diB,) j + (diB, - d,B,)f. 

This result is also expressed in the form 

(9) Fa8 = 

1 i t 
d| d} d| * 

B\ Bj By 

.Application. Let a rigid body be rotating about an axis with 

angular velocity <o, and vector angular velocity («■>). To find the 

velocity, v, and the vector velocity, o = (v), of a point P of the body. 

Let A be the length of the perpendicular dropped from P on the 

axis. (The object of drawing in the 

frame of reference, or Achaenkreuz, is 

to enable the reader more easily to 

visualize the space figure.) Then 

V 3= Aa>. 

The direction of the motion of P is 

at right angles to the plane determined 

the axis and P. Let 0 be an arbitrary point of the axis, and let 

rte(OP). Then . 

The Cartesian form of this result is as follows. Let the coordi¬ 

nates of 0 and P be respectively (a, b, c) and (x, y, z); and let tiie 

ooraptments of (») along the axes be denoted by u>i, wg, <«|. Then 

» as [(a - c) ««j - (y — 6) «,] I -f- [(* - o) irt| — (z - c) «i] J 

+ £(y - 6)«i - (»- a)stjf, 
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«! = (* — c) wj — (y — b)iot, 

Vt=:(x — a)a>t—(z — C) 0)1, 

Vs = (y — b) toi — (a? — «) Wi. 

EXERCISES 

1. If 9, 9, and (£ are three non-oomplanar vectors with the same 

initial point, the volume of the parallelepiped determined by them 

is equal numerically to 
5iaF8(£. 

2. Show that a necessary and sufficient condition that three vec¬ 

tors, 9, $3, and d, be complanar is that 

/Saras = 0. 

3. If 9 and © be two vectors, each of which admits a derivative 

with respect to ®, show that their vector product admits a derivative 

with respect to x, and that 

|.raa = r^a-i-r3t 
ax dz ax 

4. Prove that the equation of a plane which (i) passes through a 

given point, A, and (tt) is parallel to each of two non-collinear 

vectors, 9 and 8, can be written in the form; 

S(t-to)F9© = 0, 

where to, r are vectors drawn from a fixed point, 0, in space to A 

and an arbitrary point, P, of the plane 

5. Show that the equation of the osculating plane of the space 

curve, § 1, Ex. 7 is 

/8'(«-t)Ffi: = 0, 

where 91 is the vector drawn from the origin to an arbitrary point 

of the plane. 

4. Botatioa of the Axes; Siieotion Cosines. The formulas where¬ 

by we pass from one system of Cartesian axes to a second having the 

same origin (both systems being right-handed, or else both left- 

handed) are important, not only in analytic geometry of three di¬ 

mensions, but idso in mathematical physics. Let the direction 

cosines of tlie axis of x', referred to the (x, y, *)-axes, be Zi, nii, ni; 

those of / and z' being formed by advancing the subscripts. These 
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definiticais are sueomctlj set forth by the following tables, tire secv 

ostd one applying to unit vectors laid off along the axes: 

x’ y' at' V i' f 

X k Za 1 Zi Za z. 

y mi nix m* j mi 774 

z R, 74 "a 1 til nj «» 

Thus we have 

x= kx'+ hy'+ la*' 

(2) I y =» wii*' + wijy' + min' 

X = njse' 4- nty' + n**' 

t= lil'+ l*i'+ kf 
j = m, i' 4- nij i' + 7?»| I' 

1= «il'4- Wii'+ wa*' 

with analogous formulas for x',*' (or 1', j', f') in terms of x, y, z 

(or i, j, t) obtained by reading down the table, instead of across. 

Formulas (2), in either form, rest for their proof on that most 

important principle, which we meet early in trigonometry and use 

so often in analytic geometry, that if two broken lines in space have 

the same extremities, Ike sum of the projections of the one line on an 

arbitrary line in spowe is equal to the sum of the projections of the other 

line on that same line. 

From the fact that the three letters which stand in any row or in 

any column are the direction cosines of a line we see that 

(3) nil* + + wij* = 1 

4- + na® = 1 

ii* 4- wii* 4- Wi’ = 1 

Zj* 4- wij’ 4- rij* = 1 

Zj* 4- wia® + ”a® = 1 

From the fact that each system of coordinates is an orthogonal 

system we have that 

Z3Z14“ nijWij 4“ c3 0 

ZjZi 4- mtmi 4- n^Ui = 0 

kh 4- 4- Wi”! “ 0 

TOiHi 4-nij»ij 4- rntfif = 0 

**1^1 + 4” Oflf = 0 

Z,mi 4- kmx 4- Ia™a = 0 

Thus far vector analysis has not been needed, since the relations 

0) and (4) follow directly from the definitions. There is, however, 

a further system of relations which is established with great ease by 

means of the vector product. Starting with the relation 

rti=f, 

ecnnpnte each side in terms of t', i'. f. 
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f*"ii«« (Ijl' + IjI' + Itf'yi'Oiil' + + wtjf*) 

■s(Z|Wl» — I' + (ijMti — ZiOTs)i' + {h^ — 

IsB 4-Wji'-I-n,f'. 

On equating coefficients we obtain the third triple in the following 

system of relations, the other two being found from the remaining 

equations (1), § 3. 

Ij = m,n, — jit,nj = tij = Zjinj — Z,TOj 

(5) Zj = wigHi —miJia wij = «»Zi — riiZj rij = Zjnii — ZiBi* 

Zj ““ “Bl'jB'j Blj ^3 *“ B2Zj Bj — Z^BZ^ ZgBZj 

A further system of relations is obtained by writing equations (1) 

of § 3 for I', j', t’ and proceeding in a similar manner. They are the 

following ; 

Zi=Bijn,—bi,«2 Zj = Biani —BiiBj Zj = biiBj — bIjB 

(6) Bij= BjZ,— BjZj »nj= BjZ, — n,Z, Bi, = BjZ,— n,Zi 

Wj= ZjBl,— ZjBlj B2= ZgJBj—ZiBl, Bg = ZjBlj — ZjBlj 

Finally, it is now easy to show that 

Zi Zj 7, 

(7) mg mj Big 

Wj Wj 

5. Invariants. We have given a definition of the scalar product 

of two vectors, which makes that product depend only on the vectors 

involved, and not on any system of coordinates. Then we evalu¬ 

ated it in terms of a Cartesian system of axes and found that 

(1) S 9155 — ^iBi 4“ .Aj^j 4* AgSg. 

Iteferred to a second system of Cartesian axes, obtained from the 

first by the transformation (2), § 4, the scalar product has the value 

(2) 5 «» = A[B[ 4- 4- A\B'^ 

Hence 

(8) A!\^ •+• A^Bi 4" Ag®g AiBi 4" A^B^ -f- Ag®g. 

Such an expression is called an invariant* with respect to the 

transformation because, when formed for the A' ’s and B' ’s, it has 

the same value as when formed for the A’s and JTs. 

* For a general disonaaion of the idea of incaWant cf. Bdcher, AZ^aAro, 
Chap. Vn. 



cAtJcums 

pvoof given altove that the expressum 

(4) AiBi + A^Bf + AtBt 

is an invariaht was geometric. By virtue of the relation (1), this 
expression was identified with a quantity, S%^, which from ito very 
d^&oition is invariant. It would be possible, however, to give a 
direct algebraic proof by computing the A’a and J3’s in terms of 
the ^"s and B’s, substituting these values in (4), and reducing. 
The student should carry through this proof. 

The Vector Product. The situation is similar with reference to 
the vector product. This vector, like the scalar product, depends 
only cm the two given vectors, not on any system of coordinates. 
Its value in terms of a Cartesian system of axes has been found 
to be: 

(0 F«® = 
i i t 

Ai A^ A^ • 

Bi Bi Bi 

Hence the expression which stands on the right, when formed for a 
new system of axes as given by (2), § 4, each letter that enters now 

'being primed, must have the same value, since it represents the 
same vector. 

Again, the proof is geometric. An analytic proof can, however, 
be given directly by computing the .4’s, B’s, I, i, I in terms of the 
A'% B'% I', j', substituting these values in the determinant, and 
reducing. The law of the multiplication of determinants, and rela¬ 
tion (7) of § 4, are here involved. The student should carry through 
the details. 

It is not merely to satisfy an aesthetic desire for completeness or 
a moral desire for truth, that we have given the above discussion of 
the two aspects of each of the invariants — the geometric definition 
and the analytic expression — but rather to provide ourselves with 
the means of dealing with the tymbolic vectors which enter in the 
next paragraph. For there, the geometric definition ceases tb exist 
and we are obliged to fiiU back on the analytic form. 

S. Symbdio Vec^rs. Carl. Let u be a function of x, y, s, oon- 
^uous tog^her with its derivatives of the first order, and let it be 
eactied over by the Unear transformation (2), § 4, into a function of 

sf*, ji', s', 13ien 
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(1) 

dao* * % dz* 

du 1 . du . Su 

V“'’5+”>5*”>S' 

du 1 du , du , du 
+ e^- dz 

Thus it appears that, trhen x, y, z are subjected to the linear 

transformation (2), § 4, the partial derivatives of u with respect to 

«, y, s are transformed by precisely the same law. 

If we expunge from these equations the letter u altogether and 

interpret the marks 

± ± _l d 1. -L A 
dx’ dp’ dz dx" dp'’ dz' 

as ordinary numbers, then equations (1), modified as prescribed, 

represent the same linear transformation (2), § 4, performed on 

these variables. The equation 

(2) 
, d d ,.d 

dx^^'^^dz 

represents an ordinary vector, the expression for which, after the 

transformation has been performed, is 

V = ^t'A. 
^ dx'^'dp'^ dz' 

Thus if 

be an ordinary vector, we have, 

(3) 5V«= ^A+Ab + ^c, 
dx dp dz 

and this quantity, as we saw in § 6, is invariant with respect to any 

transformation (2), § 4. 

We now proceed to show that, if we interpret the symbols on the 

right of this last equation as meaning diSerentiations, the same re¬ 

sult is true, or 

M) + + 
' ^ 0*' ^ dp' dz' dx ^ dp ^dz’ 

where A, S, 0 are any three functions which, together with their 

first partial derivatives, are cont^uous. We have: 

dA! dA! . „ dA' . _ dA' 
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iritli aitnila.T' formulas for aod SC/ds^. Thus it appean 
ti|iat the actual computation of bJHis identical in farm, with the 
evaluation of the product * 

^ ^ + m,iB + Ui C?^, 
a 

and the subsequent interpretation of such products as — etc., 
as meaning differentiations. 

It is in this sense that symbolic vectors are to be understood. 
They are not vectors in any geometrical sense, and the geometrical 
definitions of the scalar product and the vector product do not apply 
to them. They are vectors only in the sense of algebraic form, and 
their definition must in the nature of the case be purely algebraic. 

Obviously, the discussion in § 5 must underlie any real understand¬ 
ing of what is going on here. Those vector analysts who omit snch a 
discussion put themselves into the class of people who justify tlie 
means by the end. 

The invariant 

(6) dx dy^ dz 

is known as the divergence of the vector 31 and is denoted by div #: 

(6) 
A- m dA .dB ,dG divas=oV3l=-5--f-5--l--^- 

ox oy oz 

OvrL Consider the vector product 

(J) 

i 

8_ 

dx 

A 

i 
d_ 

dy 

B 

I 

£ 
dz 

O 

This vector is invariant for geometric reasons when we interpret V 
as an ordinary vector. It is invariant for algebrmc reasons when 
we interpret V as a symbolic vector) With the latter interpretation 
it is known as the emi of the given vector, S; 

• It b obviously immaterial whether we prove that the right-haqd ride of 
(4) Can be tcanafotmed into tiie left-hand side, or Qie left-hand side into the 
'di^t-hsod. 
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(8) cttrl««FV!l 
\dy dzr^[dz dxP^[dx d^y' 

The Invariant SWuss^u. It is possible to write Laplace’s 
operator, 

(9) 
. a* , a* , 8* 

“aa^'^ay*'^a*2’ 

in the form of a symbolic scalar product, and thus bring out its in- 
variant characber, for we see that 

(10) S\7V = p- + ~ + — . 
a** dy^ 

It is for this reason that Laplace’s operator is sometimes written as 
V* (read triangle squared). Thus 

(11) 

is a vector function — the so-called gradient of tt, an invariant under 
the transformations (2), § 4 — whereas 

(12) V’M = iSVVw = A« 

is a scalar, also invariant 

7. Green’s Theorem and Stokes’s Theorem in Vector Form. It is 
possible to write the main results of Chap. XI, §§ 9,10, in vector 
form and thus bring out their invariant character. Thus Equation I, 
§ 9, of that chapter appears as; 

(1) SV%dV= - S%vdS, 

where y denotes a unit vector directed along the inner normal to the 
surface 5. 

In Ex. 2 at the close of that paragraph, the right-hand side of the 
equation is already in invariant form. The left-hand side can also 
be given such form by writing the integrands of the triple integrals 
respectively as u 5 Wu and S Vm Vo. 

Green’s Theorem, as expressed in Ex. 3, is already in invariant 
form, since Laplace’s operator is invariant 
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Sto&es^ Thflorem, § 10,1. of diap. XI, tiov appeass as 

(3) ^y*5(curl«)K(f5 = 

where 9t = Pi + Qi + jBl, 

/■ 
S%d$, 

aod thus its invariant character is established. 
The condition that Z,«i 

Pdx-^ Qdy 4- Bdz 

_ 

be independent of the path of integration can now be written in the 
vector form 

(3) curl a =a 0. 

8. Coiratare and Torsion of Twisted Cures. Frenet's Formulas. 
Let a space curve be given by the equations 

(1) *=/(«), y = ^(«) * = 

where « denotes the arc. Let 

r=i*t+yi + *I 

be the vector drawn from the origin to a variable point of the curve. 
Then 
(2) t = r'=x'l + y')+2't 

is a unit vector drawn in the sense of the positive tangent (the 
increasing a). 

The vector x" is normal to the curve, since /Sr'r" = 0; § 2, Ex. 3. 
Moreover, it lies in the osculating plane; § 1, Ex. 9. In the case of 
a plane curve, its length is the curvature, and the definition is ex* 
tended to twisted curves: 

(3) « = i=|r"l» V®''* + y"* + z"*. 
P 

Let« be a unit rector taken along t": 

(4) n=pt". 

This rector lies along the principal normal', Clu^. VI, $& 

Finally, let 
(6) y=Ftn. 

Thmi r is a tiiird nnitreotor, and it lies along the bPnamial; I e. 
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The three unit Tecton, 

(6) t n SB pt", v^Vttt, 

are oriented toward each other as the axes of x, y, z. It is oonven- 
lent, moreover, to form the picture of these three 
vectors drawn from a fixed point, 0, in space. If 
we think of P as describing the curve (1) with 
unit velocity, the terminal point T of t will de¬ 
scribe a path on the unit sphere about 0 with a 
velocity equal to the curvature, and the terminal 
point Q of V will describe its path with a velocity 
equal numerically, as we shall presently see, to the torsion. 

The Derivatives, t', n’, v. From (2) and (4), 

The vector v' is parallel to n, as seems plausible from the fact that 
the curve has contact of higher order with its osculating plane. A 
proof can be given as follows. Write (cf. § 1, Ex. 4) 

v' = at-|-6n-f-cv. 

Since v is a unit vector, 5w' = 0 by § 2, Ex. 3. Thus 

0 = Sw' ~ aSvt bSva -)- cSw. 

Now r is perpendicular to t and «, so iSvt = 0, (Sm =* 0. Moreover 
Nw' = l. Hence c = 0. 

Next, differentiate the equation jStv = 0: 

S t'v + S 0. 

From (7) we see that St'v = 0. Hence 

0 =* iStr' = aStt + bSta = a 

Thus v' = bn, and the theorem is proved. 
The coefficient b is defined as the torsion; its reciprocal, as the 

radius of torsion, r. Thus the torsion is a signed quantity (t.e. it 
may be either positive or negative); the curvature is unsigned. 

We have, then, finally as the evaluation of v': 

(8) 
n 
T 

To oompute the torsion, observe that it follows from (8) that 
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Since 

we haTe: 

and 80 
Hence finallj 

(9) 

V=s Vt«=‘pVt'x", 

v' = prrY" + p'rrV', 

Snv' a pSt'V = 

y' s' 
ic" y" *" 
Y" y'" 2'" 

X"i 4- y"1! + *"* ‘ 

Computation of n'. It remains to compute n'. Since 

n = Vvt, 

we have: n'= Vvt'+ Vv't 

_ Vvn _ i _ 
p r p T 

The results here established are known as 

Prenei^a Formulas : — 

(10) 

EXERCISES 

The formulas for the curvature and the torsion, when x, y, z are 
expressed as functions of an arbitrary parameter t, are as follows: 

(11) 1 IFiti 1 SiFir' 
p |rl» ’ r“ |Ftrp’ 

where the dot denotes differentiation with respect to t. 
The first of these is deduced by the aid of Lagrange's Identity re¬ 

lating to any four vectors: 

(12) s Fa® Fa'®' = /Saa' 8»»' - -sa®' 5a'®; 

Blaschke, Differeniialgeonietrie, vol, I, pp. 6 and 18. 
Deduce these formulas with the help of the following suggestions 
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1. Show that r' = ■ ■. 
VMi 

Show that t" = --(^1^. 
-Srr (say 

3. By meaxLS of Lagrange’s Identity, prove that 

8tiS'iV-(Sxiy = I Ftrl®. 

Hence obtain Formula (11) for 1/p. 

4. Show that t"' = - + a r + 6 t, 
{S tt)*'* 

where a and & denote scalars which it is not required to compute. 
Hence obtain equation (11) for 1/t. 

6. Prove Lagrange’s Identity by direct computation, availing 
yourself of the simplifications rendered possible by the symmetry 
of the expressions. 

6. Write out Equations (11) in ordinary form, not using any 
vector notation. 

9. Notation. There are two aspects of vector analysis. One is 
formal, and has to do with the manipulation of algebraic identities. 
The other is geometric, and is chiefly concerned with the relation 
of the geometric concepts involved to facts of nature and the ex¬ 
pression of these facts by equatipns between ordinary real quantities. 
The formal treatment necessarily lays much stress on notation and 
prizes highly the product idea. It writes the scalar product as 

(«8) or a-S or a® 

and calls it, for no obvious reason, the.inner product. And it writes 
the vector product as 

[a®] or ax® or a® 

and calls it the outer product. 

On the other hand, certain laws of physios involve the conception 
of vectors and the combinations treated in §§ 1-3, and so are best 
stated in vector form. It contributes to ease of comprehension to 
call a scalar a scalar and a vector a vector, and the old Hamiltonian 
notation of S and V, to which we have harked back, is self-explana¬ 
tory.* When the vector expression of these laws has once been per- 

* Hamlltos's loalar product was the negative of that defined in §2. The 
latter Is the form which has been pretty generally accepted by later writera 
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tbe next step is the transial^a into the fom of ^lee ordi- 

Daiy eqxtations, mTolving the things with which ordinary analysis 
deals—integrals, derivatiyes, eto.—and the ultimate goal in the 
formulation of the physical law is the appreciation of the inner 
meaning of this last system of three ordinary equations — a mean* 
ing invariant of the choice of the coordinate axes. 

So deeply impressed with the importance of this fact was the 
autlior of one of the greatest expositions of a physical subject ever 
written — Appell, in his Micanique rationdle — that he dispenses 
altogether with the form of vector analysis and passes directly from 
the vector conceptions to the final result. Surely, this example may 
well give pause to those expositors who lean to a highly technical 
notation, the form of which is not geometrically suggestive, while 
algebraically it is so condensed as to require special training for 
its use. They are like the analysts who prove every theorem which 
has to do with a question of uniform convergence by direct use of 
c’s. The e’s are essential for establishing the basal theorems, just 
as the scalar and vector products are useful for establishing the 
basal theorems in certain branches of physics. These theorems 
once established—and their proofs involve but slight formal work, 
rather an appreciation of the inner content of the situation — it is 
the part of wisdom to work with these remits, not prove them afresh 
every time one needs them. We do not compute oiir logarithms 
each time, before we use them. And so the general student can well 
dispense with these highly condensed notations, taking them up 
later if he has occasion to use them in some special and technical 
piece of work. When that time comes, he will find it most helpful 
to write his own ABC of vector analysis in terms of the notation 

• he wishes to learn. 



CHAPTER XIV 

DIFFEREITTIAL EQUATIOITS 

The student has already met a variety of differential equations in 
his study of the Calculus, and integrated them. The object of the 
present chapter is to systematize the methods which have hitherto 
been used, and to extend them. We shall, moreover, consider what 
the nature of the condition imposed on a function by a differential 
equation is and thus see how an approximate solution can be obtained. 

1. Ordinary Differential Equations. An equation which connects 
a function, y, of a single independent variable, x, with its derivatives 
of the first n orders : 

(1) dx’ d**’ ’ darj ’ 

is called an ordinary differential equation, in distinction from a partial 
differential equation (cf. § 21), and its order is defined as n. If 
several functions, y, z, •••, are connected with one another and their 
derivatives by as many equations as there are functions, we have a 
system of ordinary differential equations. Thus the equations 

(2) ^^F{x,y,z), 

form such a system. 
By an integral (or primitive) of equation (1) is meant a function, 

y =s/(*), which satisfies that equation j i.e. if f{x) be substituted for 
y in the left-hand member of (1): 

^m\ 
dx" )' 

this latter expression, which is a function of x alone, vanishes iden¬ 
tically. 

Each time that we have integrated a differential equation of the 
first order, we have found, as the most general solution, a function 
depending on one arbitrary constant. When we have integrated a 
differential equation of the second order, we have found a function 
depending on two arbitrary constants. And so we surmise that the 

3U9 
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most gesend foni^icm which satisfies equation (1) will depend on » 
arHtiarY constants, „ . \ •’ ’ y =»/(*, Cl, c,). 

The guess is correct, and the precise formulation of the theorem will 
be given in §§ 15,16. 

As regards the processes admitted, we shall consider a function as 
known when it is given by a quadrature, i.e. when it is determined 
by an integral. This amounts to saying that, if 

dx 

where f(x) is any function which is merely continuous in an interval 
a < a; < 5, and if a;, is a point of this interval, the function 

F(x) dx 

is considered as a known function (geometrically, it is the area under 
the curve), although it may not be possible to evaluate the integral 
in terms of the elementary functions; Le. to express it in terms of 
rational functions, radicals, sines and cosines and their inverses, 
logarithms and exponentials, or as a combination of such functions. 
Example: the elliptic integral 

s 

/ _d*__ 

V(l-x'»)(l-A:»a!*) 

We note that any indejinite irUegral which satisfies the above 
differential equation can be written as the dejinite itUegral whose 
value is F{x), plus a constant, or 

m 

dx =J'f{^)dx + a 

Secondly, we regard a function as known when it is given by an 
impUeit equation. Thus the equation 

log (** + y*) ss tan-‘2 C 
X 

defines y as a function of x, although we see no means of expressing 
yexplidtly in terms of x by means of the elementary functions, and 
^re is, moreover, no reason to suppose that such an expression is 
possible. 
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I. Equations of thb First Order 

3. Sflpunttiioa of Variables. Let the differential equation 

m !-/(•.!-) 

be given. It may be possible to separate the variahlea, i.e. so to 
transform the equation that all terms involving x appear on one 
side, and all terms involving y on the other side; 

dx _ dy 

M{x)^N{y) 

The equation can then be integrated: 

where an arbitrary partieular indefinite integral is chosen in each 
case. 

The first example of the application of this method which we met 
appeared in the treatment of Simple Harmonic Motion, Introduction 

to the Calculus, Chap. XIII, § 6, p. 366; 

I—VfvBnn., 

t 

dt = 
dr 

V.B* - r*’ 

^[R f dr 

^ 9J Vii" - r* R 
+ C. 

EXERCISES 

Integrate each of the following differential equations: — 

1. II Ana. y = Ce^. 

a. 
dx y 

Ana. 3^ —y*=C. 

8. ^ = 1. 
dx X 

Ans. y » Cx. 

4. aecxooB^ydx = ooexainydy. 
Ans, sec y «= tan x-t- C. 



m CAIiCUMJS 

S. •y/2ajf ~-f^c»exdx4-ytimmdy a 0. 

Ana. osc® = V2ay — y* + 0! 
a 

«, *(3 + *)^»t(2* + 3). 

7. asVl — y*ett + yVl — ®*d!y =» 0. 

8. (e» + l)co8»^ + e'Binacdj/=s 0. 

3. Linear Equation!. By a linear differential equation of the Jirat 

order is meant an equation of the form * 

(1) |+-Pi'=e. 

where P and Q are giren functions, depending on x, but not on y. 

Such an equation can always be integrated by means of the follow¬ 

ing device. Multiply through by the factor t 

(2) '"'■(I+2-2)-S'"* 

The left-hand side is seen at once to be the derivative of the function 

y^'*". Hence (2) can be written in the form 

and it remains merely to integrate each side of this last equation. 

Exam^. Griven 
^ ^-(-2=4x». 

dx X 

Here, J el’’*' = c”®»' = x. 

On multiplying through by x we have: 

x^ + y^AiA 
dx 

or , 
ax 

* Extraaions eS. the definition an found below in { 11 and { 2?. 
tKnownasanfnfe^afin^/hetor; of. $20. 
t The student should review carefully Chap. VI, $ 1, cd the Introduction to 

Ae Ooleulos, for be will be expected, in the prewnt chapter, to nse freely the 
4d^ue»tary i^opartke td logarithms. 
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Henfie 

or ysa!lf+ — > 

EXERCISES 

Integrate each of the following differential equations: 

Ana. y = 2®* + 0* 1. ^-2=4**. 
ax X 

2 dy 2a?/ _ ^ 
dx a? + 

dx 
+■ y cpt X = sec x. 

y = 2L±£?tan-‘5+C'(x*-l-o*). 
a a 

\ 

^ns. y = (log sec x + O)c80 a 

4. x^4-(l + x)y = e*. 
ax 

6. = X — y. 

^ c* , ce~* 
^ns. y = ^-\- 

2x X 

dx 

7. — + y = cos X. 
dx 

6. cot ^ ^ = r + e~*. 

8. ^ —ay = 6 sinx. 
dx 

9. Show that the differential equation 

^+pz = -i- 
dx ^ , z-l 

can be reduced to a linear differential equation by the substitution 

y = *”• 

10. Integrate the differential equation 

ds & — = a«+-- 
dt 8 

4. Honu^feneoob Eqaations. The differential equation 

is sometimes called a homogeneous equation, because the righthand 
side is homogeneous fof order 0) in x and y. It can be integrated by 
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a qaadratore. Introduce a nev variable,* 

a 

Then y = vx, 

and equation (1) becomes: 

(2) x^ + v = <l>(v). 

Here, the variables are separable; we have 

dx dv 

X <f>{o) — V ’ 

and it remains merely to integrate each side 

Example. 
dx x — y 

dv . 
x^- + v 

dx 

1 — V 

1 -I- v* 
dv, 

1 + v 

1-v’ 

log* = tan-*2 —ilog(l 4-v^)+C 
* . 

s= tan-‘^— log V»* + y* + logx+ 0, 
X 

at _ 

tan-i 2 = log - Mix. 
X ® \ a* 

In polar coordinates this equation becomes; 

^=alog-, r = oe*, 
a 

an equiangular spiral. 

* The student wiU recall that a similar device was employed in algebra for the 
solution at two simultaneous quadratics of the form — the so-called homogeneova 

®**“" alX*-^ 6i*y + ciji^ = di, 
Otz* 4- 6i*V + c»Ji* * 
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Scdve the following differential equations: — 

1. dy _x — y 

dx x + y 

§1 _ 2g + 3y 
dx x-\-iy 

3. 
dx x + y 

Ana. as* — 2xy — y* os C 

Ana. (as — y)*(as + 2y) =: C. 

as + w. 

das 

dy _ Ax + J3y 

das Cas + Z)y 
Treat all cases. 

6. Show that the differential equation 

dy _ as — y + 3 

das X + y — 6 

oan be reduced to the form considered in Question 1 by means of 

the transformation: 

x = x' +A, y = y' + A: 

where h and k are determined by the equations: 

h — k = —3, A+ k — &. 

7. Apply the method of Question 6 to the differential equation 

^^ AD-BC=^0. 
dx C7x + 2?y + JIf 

8. Solve the differential equation ; 

^ = ^Tw. 2(x-y) = log(2* + 2y + l) + 0'. 
das x + y + l 

9. Show that the differential equation of Question 7, when 

AD — BC = 0, can be solved by one of the substitutions 

z = Ax + By, z = Cx + Dy, 

provided all four coeflOicients A, •••, D do not vanish, 

10. Solve the differential equation 

if y a when as 0. 

-y. —. 
dx X — cVa5*-|-y* 

Ana. X 
a 

2 
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It. Bbow that tiie differential equation 

^ ss /(ax + Jy), a ^ 0, & 0, 
ax 

can be solved by aid of the subatitation 

V ™ 035 + ?»y. 

IS. Integrate the equation: 

^ = 8m(2a! + y). 

IS. Show that Equation (1) of the text admits the solution 

y^ax, 
in case the equation 

has a root, 

(=<!>(() 

(~a. 

S. Equations of the Second Order with One Letter Absent. Con¬ 
sider the general differential equation of the second order, 

(1) dafl 

The function F will in general involve all three arguments, *, y, 
and dy/dx. If, however, one (or both) of the letters x and y is lack¬ 
ing, the equation can be reduced to one of the first order by means 
of the substitution 

® ‘’-I- 

If y is lacking, so that F(x, y, p) = ^(x, p), then (1) becomes 

(3) dx 
^(x,p). 

If, however, it is x that fails, but y is present, so that 

F(x,y,p)=,l,(y,p), 

tii^, since 

we have for (1) the equation 

dsfi 
, 

dxdy 
.p^. 
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Iq eadi of these cases the solutioa of (1) has been reduced to the 
Sidution of a diSerential equation of the first order, foUoved by a 
quadrature. 

A difEerential equation of the n-th order, vhich does not contain 
both the independent and the dependent variable explicitly, can be 
reduced in the same manner to one of lower order, and it remains, 
then, to integrate the latter and to perform a quadrature. 

Example. We met this method for the first time in the chapter 
on Mechanics, when we integrated the difierehtial equation 

— =/(s) 

by introducing the variable 

thus reducing the original equation to the form 

= /(«)• 

EXERCISES 

1. Integrate the differential equation 

(A:* + a* cos* ^ ^ ^ ~ 

Ans. (Ac* + a* cos* ff) 

2. Integrate: 

dy* » \dv} 

Y 
\dt) 

2ag cos<l+ C. 

\dyj 
’f c is positive and ^ 1, and y = 1, dx/dy = 0, when « =e 0. 

Ans. x = } 1 
,1-. 2c 

c-f-1 c —1 c* —1 

Applications 

6. The Catenary. The catenary, as its name suggests, is the curve 
in which a chain hangs. Let us determine its equation. 

The physical assumption is that of a material curve, homogeneous 
(i.e. of constant density, p), perfectly flexible, and inextensible, whose 
ends are fastened at two fixed points and which hangs at rest under 

the force of gravity. 
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Let tile axia of a be horizontal, and at a distal^ e below the 
lo'vrest point, A, of the oorve, where o is h oonstaht whose 'V'alne 

we will assign later; and let tiie aria d 

fy y pass through A. Let P: {*, y) be an 
arbitrary point of the cuiwe, and 

P : (® + Aaj, y + Ay), 

a second point. Consider the arc PP 
and isolate this system; i.e. consider this 
portion of matter and the forces which 
act on it. They are (i) the force of 

gravity, gpAs, where p denotes the mass of one unit of length of the 
string; * (ti) the tension T at P, directed down f the tangent; (tit) 
the tension T' = T+AT at P, directed upf the tangent. Now, 
this aroPP has been assumed flexible; but since it is in equilibrium, 
if it congeals and becomes a rigid body, it will obviously 1 continue 
to be in equilibrium under the action of the above external forces, 
(0, (**)• 8Jid (iit). But we know the conditions under which a rigid 
body is in equilibrium under the action of a system of forces; in 
particular, it is necessary that they be such a system as would keep 
a particle at rest if they all acted at a point. Hence the algebraic 
sum of their components along an arbitrary direction must vanish. 

Besolving, therefore, horizontally and vertically, we have: 

(a) Pcosr'=s Tcost; 

(b) T' sin t’ = Psin t + gp As. 

From (a) we infer that 
(1) Pcost = To, 
where To denotes the tension at the lowest point, A. For, we may 
take P at A, and then T' = To, r' = 0. 

Equation (6) can be written in the form: • 

* It is not fanportant here that forces be measured in absolute units. If tht 
student pr^ers, he may take w as the weight of one unit of length of the string, 
Mid then the force of gravity becomes w ds. 

t If P lies below P, these directions will be reversed. 
t This is, of course, the assumption of a new physical law, so compelling 

however, as to seem self-evident. 
t An equation antiogous to (1) can be derived from (6), namely, 

T sin r s gps, 

whMes is measuned from 0. Mechanically, this means that the vertical com- 
ponrat of T at P is just equal to tiie weight of the arc in questhm. 
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(&•) T' sin t' — rain T 5= gp A*. 

The left-hand side of this equation is precisely the increment of 

the function Tsinr. Hence (&') becomes: 

(6") A (T sin r) = j^p As. 

Divide (b") through by Ax and then let Ax approach the limit 0: 

limA(r«^^)=gpIim^, 
Ax &amAX 

or * 

(2) D.(Tsinr) = ppD.s. 

Replacing T in (2) by its value, 2o sec t, from (1), we have: 

ToD,{\&a.r) = gpD^a, 

or, since tan t = D,y, 

(3) = c = 
c gp 

the last equation giving the value we now assign to c. 

To integrate equation (3), which we now write in the form 

' ' dx* c > \dxj ’ 

we observe that (4) is a differential equation of the second order, in 

which the variables x and y do not both enter explicitly. On setting, 

therefore, by § 6 

(6) P=^, 
equation (4) becomes _ 

(6) 
dx c 

This is a differential equation of the first order, in which the 

variables are separable, § 2: 

dx __ dp 

c Vl+JJ* 

• We use the notation D, for the derivative advisedly ; for, the formulation 
of the physical problem which culminates in equation (2) leads to derivatives, 
HOT to iifferenUaXa. The latter are introduced later for purely analyUeal rea- 
sona Thus the derivative expresses the thought of physios ; the dtSerential is 
the tool of mathramatioa 
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Heaoe 

(7) 
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-= T—J^====iog(p+vr+5i^+o. 
c J Vi + 

At X = 0 and ^ = 0. Hence 0=0. 

Equation (7) is equivalent to the following 
■ 

(8) Vl+p*+i) = e'. 

In order to solve this eqmtion for p, we could clear of radicals and 

proceed as in elementary algebra; but the following method is more 

elegant. Take the reciprocal of each side of (8): 

■ L. 

And now rationalize the denominator by multiplying numerator and 

denominator by Vl — p. Thus we find : 

(9) Vl 4-p’ —p = c "' 

On subtracting (9) from (8) we have: 

LO) 2p = e‘-e% 

We can now find y: 

^ = l(e’ - e~^). 

y= J'i{e’ — e «)f/x = |(e‘ + e~’} + K. 

To determine K, observe that, when x = 0, y = c. Hence K=0 

and we have, as the Equation of the Catenary: 

(11) y=|(e° + e"'). 

All catenaries are similar. When c = 1, we have the hyperbolic 

cosine, Chap. XX, § 9. 

(12) y = chx, 

and, generally, y=:cch5. 
c 

EXERCISES 

1. Suspension Bridge. Find the curve in which the cables of a 

suspension bridge hang, when only the weight of the roadway is 

taken into account. Ahs, A parabola 
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Note. It is assumed tiiat the roadway ia^straight and horizontal, 

and not subject to any stress of bending; that the weight per run¬ 

ning foot is uniform; that the vertical rods which connect the cables 

with the roadbed are so near together as to form approximately a 

continuous system; that the weight of these rods and of the cables' 

is negligible, compared with that of the roadbed; and that the cables 

are perfectly flexible. 

2. Japanese Screen. A bamboo screen for a hall closet is made by 

suspending slender rods of rattan, all of the same diameter, from a 

string, to which each rod is knotted, and letting them hang down so 

that each rod just touches the floor, two consecutive rods just touch¬ 

ing each other. Find the curve in which the string hangs, if the 

diameter of the rods is negligible. , . , 

Ans. y = c» = ^. 
w 

3. Suspension Bridge; Oeneral Case. If, in Question 1, all three 

weights — cables, rods, and roadbed — be taken into account, find 

the differential equation satisfied by the cables. 

Ans. + 

4. Show that a catenary of variable, but continuous, density ii 

determined by the differential equation 

5. Show that a non-homogeneous heavy string can hang in equi¬ 

librium in an arc of the circle 

»* + y* = 

if the density is equal to aT',/[gf(a* — a^)]- 

6. Prove that the forces which act on an arc of a catenary limited 

by the vertex are such that the algebraic sum of their moments about 

the vertex is nil. 
Hence show that the sum of the moments of the forces acting on 

an arbitrary arc is nil, no matter about what point the moments be 

taken. 

7. Show that the centre of gravity of an arbitrary arc of a catenary 

lies directly above the point of intersection of the tangents drawn at 

the extremities. 
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7. IJostiBSktieik; l^natUai of th» Gatnury* , The West pWt 
vi the eakteoaiy is called the vertex, and the line coinciding with the 

axis of a, the directrix. The onrre is synunetric in tine vertioal 

thcongh the vertex. 

Meehanioal Meaning of the Directrix. If a peg, of negligible radius, 

be placed at any point P: (x, y) of the carve, the catenary secured 

at P from slipping down, the string cut considerably above P and 

allowed to hang straight down; and if, now, this free end be cut off at 

tixe directrix; then the string, assumed smooth, can 

be released at P and it will not slip. 

For, the tension in the free end at P will be simply 

the weight of a segment y units long, or gpy. On 

the other hand, the tension at any point is, from (1), 

T = r«seoT=T.^ 

Now, from (8) and (9), and (11), 

Fis. T6 

dx 

^=Vr+F=i(e4e-f)-?. 
OCX c 

Substituting for c its value from (3), we have: 

(13) T = gpy, 

and this completes the proof. 

Thus we see that we may apply smooth pegs at any two points, 

hold the catenary against them, and cut the string so that each end 

will just reach to the directrix. On releasing the string at the pegs, 

it will not tend to slip. 

The Are and the Tendon. The length of the arc, measured from 

the vertex, is 

(14) s«^(e^-e'^) = csh?- 
2 c 

The tension has the value (13), or 

(16) r » + e'S = r, ch 5. 
Z c 

Problem. A chain 32 ft. long has its ends fastened at the same 

level to two poets 30 ft. apart. To find the dip in the chain. 

This problem was studied in the Introduction to the Calculus, p. 174, 

Ex. 2. The determination of the constant c (there denoted by a) 

leads to an equation. 
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irhioh oafnnot be adved by tbe ordinary methods of algebra.^ That 
it has a eolation, is clear from the fact that a ctmtinnoas function 
which changes sign must pass through the value 0. The higher 
methods for solving this and similar equations, which were set forth 
in that chapter, lead readily to the result lhat c = 23.9, and hence 
the dip ha-found to be 4.89 ft. 

EXERCtSES 

1. Two smooth pegs at the same level are 2 a feet apart. Show 
that the shortest string which can be hung over them so as not to 
slip when released is of length 2l = 2ea. 

2. If the pegs in the preceding question are 2 ft. apart, and if the 
string is 6 ft. long, show that it can be hung over them in two, and 
only two, catenaries. Determine the vertex and the directrix of each. 

3. Find the tension at the lowest point' of the chain in the Prob¬ 
lem of the text, if one foot of the chain weighs 4 lbs. 

4. What should be the length of the chain in the Problem of the 
text, that the dip be precisely 1 ft. ? Show that c is given by the 
equation 

cha!=l-f--iV®> * = —• 

Solve this equation for x by means of Peirce’s Tables, p. 124, to 
two significant figures; x = .13. 

By means of the series 

ch® = !-»-- 

obtain the approximation ® = ^. Then, setting x=i-^ — e, obtain 
an approximation for c, and show that x = .1331, to four significant 
figures. 

6. Find the tension at the lowest point of the chain in the pre¬ 
ceding question. 

6. Show that all catenaries having the axis of x as their directrix, 
the vertex of each catenary being on the positive axis of y, lie above 

the lines y 

the equation . 

and y » — where \ is the positive root of 
\ ^ 

X s coth x, 

each catenary being timgent to each of these lines. 
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T. smooth pegs are at the same leTd and 2 ft ajiast Fiad 

aE &0|KMitio&8 of eqoilibriam for a loop (n closed string) 6 ft loo^ 

iriiudi is hung over them. 

4. B<1^ round a Post. Let it be required to find the law of ten- 

8l<m in a rope which is wound round a post and is just oi^the point 

of slipping. 

We have to do here with a flexible inextensible weightless string 

wound on a rough circular drum. Consider an arc P/". Imagine 

this arc now to be frozen, so 

that we have a rigid body to 

deal with. Isolate this sys¬ 

tem. The forces acting on it 

are: (i) T at P; (it) T' = 

T -f n r at P*; and (tit) the re¬ 

action of the drum, which is a 

force S, inclined toward the 

direction opposite to that in 

which the string tends to slip. 

Let S make an angle A.' with 

the radius OP produced. Then the physical law ia that 

(1) lim A' = A, 
fi-P 

where A is fA« angle of friction, or fi = tan A. 

In order to make clear to ourselves the plausibility of this law, 

imagine a heavy chain to be laid out straight on a rough floor, and to 

be pulled so that it is just on the point of slipping. Consider an arc 

(Le. a segment) PP' of this chain. The forces 

acting on PP' are: T, T', W, and 3. And now, 

by the ordinary law of friction, we have, that 3 

makes precisely the angle of friction, A a: tan~i p, 

with the normad to PP'. 

The situation in the actual case is similar. 

Here, gravity is replaced by the pressure of the curved surface of 

the drum against the treightless arc PP' of the string. When the 

arc is short, it is like the straight line segment of the chain, and 

it is clear* that 8 will make an angle A' with OP produced, which 

ia nearly equal to A. 

f Not from mathematioal reasoning, bat from physical Intnition. We are 
Beating here thephyaieal hvpothesii whjcb we lay down, and on which the Whole 
tteatniWiit d the problem tnrna 

Fio. 78 
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W« oan now proceed witk tiie mathematical treatment of the 

problem. Resolving the forces along the tangent and normal at P, 

we have: 

(a) T* cos = r 4- 5 sin ; 

0) 
Hence 

or 

T' sin A<^ = /S cos X'. 

r.'i03.4<^-2:^tanX' 
7” sin Ai^ 

T' cos A<^ — T = 2” tan X' sin A<i>. 

Write the left-hand side of this equation in the form; 

(T-f- AI^cos A<^ — T= ATcos A<iv — r(l — cos^4>). 

We are now ready to divide through by A<^ and take limits : 

A-^cos A,A - 7* = r tan X' 
A^ A(^ Ai^ 

flimAr)flimcosA.^U TlimlrL^ 
A</)/ \a*<=o y Alp 

=:(lim T'^f lim tanX'')flim 
\4«*o y\A4>±o A9 y 

By the Introduction to the Calculus, Chap. V, § 3, we have: 

lim = 
£k<f> a(M> A(> 

and from the physical law, 

lim tan X' = tan X = pu 

Hence, finally: 

(2) 

Again it is a derivative that expresses the physical thought of the 

problem. In order to manipulate mathematically the result, we 

introduce differentials: „ 

<*) 

This differential equation can be integrated by separating the 

variables, § 2: > ^2' 
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T = jx^ + C. 

Whea ^ = 0, r* T,. Hence <7 = log 2*,, and we hare as the law 

of tension: 

(4) r= 

It will be observed that the result is independent of the radius of 

the drum. 

EXERCISES 

1. The MUes Standiah is docking at Kantasket and a longshore¬ 

man is holding her by a hawser wound round a post of the wharf. 

If the coefficient of friction is and if the steamer is pulling with a 

force of 6 tons, how many turns of the hauser are necessary, in order 

that the man need pull with a force of only 50 lbs.? 

Ana. Slightly over two and a half. 

2. If the coefScient of friction of a band brake is show that the 

brake will be nearly six times as effective when applied to a com¬ 

plete circumference, as when applied only to half a circumference. 

9. Heavy Strings on Surfaces, Bongh or Smooth. Let a heavy 

chain of continuous density, p, rest on a 

smooth surface and lie in a vertical plane. 

The forces acting on an arc PP', which 

we isolate and assume to become rigid, 

are: T, T' = T + ^T, 8, and gp^, where 

p denotes the mean, or average, density 

of the arc. Let the angle from 8 to the 

normal at P be e. Then the physical law 

ia that 

(1) lim « = 0. 
j>'*r 

In fact, it is clear * that the direction of 

8 must lie between the two extreme nor¬ 

mals — the one at P and the one at P*. 

Besolving along the tangent and normal at P, we find: 

(a) T' cos At -t- gpAa cos r 5 sin e = T; 

0) T'sin(—At)-l-gpA8 8inT = (8cose. 

*!niis is, of oootas, only another form of statement for the physical law. 
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' Ob elimioatipg S between (a) and (d), we have: 

r'cosAr— T + ^p^8cobt _ 

T'sinAT — ppAs sinr ” ** 

or AT* * n, 1 — cosArAr , - A« 
-cos Ar — T-+ gp — cos t 
Ax Ar Ax Ax 

: tan c sin Ar Ar As _ As ■ ^ ■—;— -Op — sin r 
Ar As Ax Ax j 

Now allow Ax to approach 0. The right-hand side of the equation 

approaches 0, for lim t = 0 and the parenthesis approaches a limit. 

Hence the limit of the left-hand side is 0, also. This latter limit has 

the form below, or: * 

(2) D,T+gpD,s cos r = 0, 
or 

(3) 

If p = const., (3) gives: 

(4) To-r=^p(x-Xo). 

Suppose the lower end of the chain has the abscissa Xi. The ten¬ 

sion there is T= 0, and so the tension To at the upper end is 

This is precisely the value that the tension would have if a length 

Xi — Xi, of the chain hung vertically downward. We see, then, that 

a chain will rest in equilibrium on a smooth surface if it is allowed 

to hang over the upper part of the surface, the free end reaching 

down to the level of the end which is on the surface. 

We have tacitly assumed that the curve is always concave toward 

the negative axis of y, and that 0 < r < 7r/2. The treatment holds, 

however, with slight modification for a heavy string in a smooth tube. 

If p is very small and x — Xq only moderately large, T is always 

nearly equal to TV We see, therefore, that it must be a physical 

* It might seem as if this equation could have been inferred at onoe from (a) 
alone, written in the form: 

ATooe At- — r(l — cos Ar)-H gp A< cost + Ssin e = 0, 

since lim ain« = 0. But it is not clear from (a) alone that S/Ax approaches a 
limit (the essential thing is that this variable remain finite), when Ax approaches 
0. 
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iUfb tcb&t tiw tsnsion m a weightless string which passes over a 

smooth BQrface is the same throughout. This checks with common 

sense. The tension in a rope which passes through a block is the 

same on both sides of the pulley, — or would be so if the pulley were 

frictionless and the rope perfectly flexible and weightless. 

EXERCISES 

1. On a rough circular cylinder with horizontal axis is placed a 

chain, one end of which is at the level of the axis ; the other, hanging 

down to a distance I below the axis, and the chain is just on the 

point of slipping. Show that the tension, T, satisfies the differential 

equation: 
— - gpa(cos ^ sin <f,). 
{19 

Assume the chain to be a uniform, flexible, inextensible string, 

lying in a plane perpendicular to the axis of the cylinder. 

5. Prove that, in Question 1, 

8. A piece of the chain of Question 1, equal in length to a quad¬ 

rant of the cross-section of the cylinder, is laid along such a quadrant, 

the lower end of the chain being at the level of the axis of the cylin¬ 

der. Show that the least value which /u may have, if the chain is 

not to slip, is given by the equation: 

tan 2X = e* 

4. Solve this equation for ^ to four significant figures. 

Ans. iJL = 0.7322. 

6. Two smooth circular cylinders, external to each other, have 

their axes horizontab A heavy chain is hung over them, and is in 

equilibrium in a plane perpendicular to their axes. Show that its 

mids lie in the directrix of the catenary in which the part of the 

chain between the cylinders hangs. 

8. Show that, in the problem studied in the text, 5/As approaches 

a limit when P* approaches P. This limit, or, may be thought of as 

the apedjie reaction, or the pressure per unit of length, which the 

drum exerts on the string. 

7. It was assumed in deducing equation (3) that AT/Aa; ap¬ 

proaches a limit, and then that limit was computed. From (a) and 
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prove (I) that XT approaches 0 when Xx approaches 0; and 
(ii) that XT/Xz approaches a limit 

t. A heavy string of continuous density is in equilibrium in a 

smooth tube in the form of a twisted curve. Show that the tension, 

T, satisfies the differential equation (3), the axis of * being vertical 

and positive downward. If ^ = const, equation (4) holds in this 

case, too. 

9. Pile of Theme Paper. Suppose that a pile of theme paper is 

pierced by a hole near the middle of an edge; that a string is in¬ 

serted ; and that the paper is hung up, being prevented from bulg¬ 

ing by two vertical walls. If the string, paper, and walls are all 

smooth, find the curve in which the string hangs. 

Ana. An arc of a circle. 

Note. Although perfect smoothness cannot be attained physically, 

still, a close approximation to the conditions of the problem can be 

realized by hanging the paper up in a freight car. The jarring will 

cause the paper to adjust itself as prescribed. Thin metal plates, 

all of the same weight, would be better adapted to the purpose. 

10. What will be the differential equation of the curve of the 

string in the preceding question if the paper is trimmed so that the 

lower edges all lie at the same level ? 
dy 

il. The Hydrostatic Arch. Consider a canal for carrying water 

across a ravine, the bottom of the canal being an arch. What must 

be the shape of the latter, in order that it may not tend to bend at 

any point? Neglect the weight of the arch in comparison with the 

weight of the water it supports. 

Let the axis of a; be chosen in the surface of the water, at right 

angles to the direction of the canal, and let the axis of y be positive 

downward, passing through the top of the arch. Then 

A-...P. . = 1, 

IS. Integrate the differential equation of Question 11. 

Ana. *= r— ■ —.y’’ where h denotes the 
J V(y‘-A«)(4c*-|-&*-y») 

minimum depth of the water. 
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If t»» > «„ then c < 1, and the duck will make port. If, howerm:, 

»»< Vm, the duck will be carried down stream and approach the 

opposite bank asymptotically. Finally, if then c n 1, and 

the path is a parabola. The duck will sidle up toward a point half 

as fiir down the bank as the breadth of the stream — mudi as 

the Hhine steamers make a landing. 

(c) The Dog and His Master. A dog, out in a field, sees his 

master walking along the road and runs toward him. Find the path 

of the dog. It is assumed that the dog always heads straight for 

his master, that each moves at a uniform rate, and that the road is 

straight. 

The same figure can be used as in the case of the tractrix, but 

with a different interpretation. For here, 

« = OQ==v^t, 

and it is expedient to observe that 

Thus 

X = OQ — MQ = v„t + y cotr. 

dx 
*= cs + y—, 

dy 

Differentiating with respect to y and observing that da/dg is nega¬ 

tive, we find : 

The integral of this equation has been found for the case that 

« ^ 1 and y = 1, dx/dy = 0, when as = 0; § 6, Ex. 2 : 

(6) I 2c 1 
2I1 + C 

and since, for a given value of c, all curves are similar, this one 
gives the shape for the whole class. 

If c < 1, the dog overtakes his master at the point of the road for 

which ® = c/(l — c*). If c > 1, the dog approaches the road asymp¬ 

totically. The case c = 1 presents no difficulty; but equation (6) 

is replaced by one in which a logarithmic term appears. 

, A number of furtlmr problems similar in character to those dis¬ 
cussed here are given in Tait & Steele's Dynamics of a 
Chap. 1. 
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EXERCISES 
/ 

1. A man swims a>eros8 a river, always heading stra^ht for the 

opposite bank. If the current is such that he is carried down stream 

with a velocity proportional to his distance from the nearer bank, 

find his path. jdns. A curve made up of two ec^ual parabolic arcs. 

2, A circular turn-table rotates about its axis with uniform velocity. 

An ant steps on at the outer edge and crawls straight toward a light 

at the centre of the table. Find the path of the ant in space. 

Ans. r = a(l — eff). 

8. If the sun is setting in the west and the ant boards the turn¬ 

table at its most easterly point and then always crawls straight 

toward the sun, show that the ant will describe an arc of a circle. 

4. If in Question 2 the light had been at a point fixed in space, on 

the circumference of the turn-table and diametrically opposite the 

point at which the ant steps on, obtain the differential equation of 

the path of the ant. 

II. Linear Equations of the Second Okdeb, 

AND Higher 

11. Elementary Theorems. 

(1) d*“ 'dx" 1 + 

The differential equation 

... +F^_i^+P„r,= Ji, 

in which the coefficients Pj, •••, P„, B, are given functions of x, 

which do not depend on y, is called a linear differential equation, be¬ 

cause it is linear in y and its derivatives. If ii = 0: 

(2) 0, 
the equation is said to be homogeneous; otherwise, non-komogeneous. 

The homogeneous equations form far and away the more important 

class. 

Theobeu I. Jfyibea solution of the homogeneous linear differen 

iicd equation (2), then cyi, where c is any constant, is also a solution- 

By hypothesis, y, satisfies equation (2), i.e. 

(3) ^ + p^^^ + ...+P,yi = 0 
CUT’"* 

is a true equa^on. We wish to prove that cy, also satisfies equation 

(2),»e. that 
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is a true eqaatdon. It is clear how to draw the inference. 

Thsobkii II. ^ yi and be two aolutions of the komogeneoue 

linear differential equation (2), them, their aum, yi + y^, is also a 

solution. 

The proof is similar to that of Theorem I, and is left to the 

student. 

Linearly Independent Functions. If n functions, fi(x), •••, 

are connected by an identical relation of the form: 

(5) Oi/i(*) + — + Cn./«(*) = 0, 

where the da are constants not all 0, the functions are said to be 

linearly dependent. If no such relation between the functions exists, 

they are called linearly independent. 

Thus, for n = 3, the functions 

/i (*) = sin X, /a (®) = cos x, /, {x) ~ sin (x + a) 

are linearly dependent; for 

/i (x) cos « + /a (x) sin a — (x) = 0, 

For an arbitrary value of n the first n powers of x, namely, = 1, 

a^ssx, X*, x*"i, form a set of n linearly independent functions; 

for the function 
Co + CiX + CjX* + — + c,_,x^i 

vanishes identically when and only when each coefficient is 0. 

Existence Theorem. It is shown in the theory of linear differen¬ 

tial equations that, if the coefficients of the homogeneous linear 

differential equation (2) be continuous in an mterval a g x ^ 6, 

there exist n linearly independent solutions, y^, each defined 

throughout the interval. 

From Theorems I and II it appears that the function 

(6) y = Ciyi + Cjy, + — -I- 

is also a solution, where the c’s are any constants. 

And now it is shown, furthermore, in the theory of differential 

equations that, conversely, every solution of (2) in the above inter- 

, val can be written in the form (6). 

The NotuHomogeneous Equation (1). The solution of this equa* 

can be referred to that of the corresponding homogeueous 
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equation (3) whaiever one single articular solution of (1) can be 

found, as is stated in precise form by the following 

Thkoekm. Let T be a particular solution of (1); i.e. a funditm 

which satisfies (1), but contains no constants of integration. Then the 

general solution of (1) is 

y= r+ c,y,+ ... +c.2/„ 

where y,, •••, y„ ore n linearly independent solutions of the correspond¬ 

ing homogeneous differential equation (2), and c,, •••, are arbitrary 

constants. 

By hypothesis, we have the equation 

(7) + P,F=iJ. 

Now let y be any solution whatever of (1). Subtract (7) from 

(1); then 

... +p^(y_r)=o, 
da:” da:"-‘ 

i.e. the function y — Y satisfies (2). It can, therefore, be written in 

the form (6): _ , , , 
'■ '' y-r=Ciyi + Cjy,4- ••• +c,y,, 

and the theorem is proved. 

EXERCISES 

Show that the following functions are linearly independent when 

71 = 2: 

1. sin X, cos X. 2. e-“ sin pt, e-“ cospt. 

8.* X, e*. 4. e*, sinx. 

6. e’”‘. P^<1- 6. e"** 1 xe"*. 

Are the following functions linearly independent ? 

7. ns=3: e“, cospa:, eP'sinpx. 

8. nc=4: sinpx, cospa;, sin^rx, cosqx. 

9. n =3 4; e" sinpx, «" oospx, sin qx, eP* cos qx. 

10. By a simultaneous system of n linear differential equations of the 

first order is meant; , • 
^ = ^a,*y<+a*, fc=.l,—,n. 
ox 

• Suggestion. Assume the theorem {also. Then Ax + = 0 tor all valuea 
d z; and now differentiate. 
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wolBifliflato, and a^, are my ocrntmaons functioiis of as. 33^ 
l^atem is said to be homagmaou* if » 0, Jtc a: 1, n. 

Write ottt such a system (both nou-homogeneous and homogeneous) 
lo? nos2 and n = 3. 

By a K^vtion of such a system is meant a set of n functiona 

=/*(*)> * = 1,-, n, 

which satisfy the giren system. 

State and prove Theorems I and II for a homogeneous system, and 

tee last Theorem of the text for a non-homogeneous system. 

11. Show teat the linear differential equation 

a?^ + Px^+Qy=R 
da^ dx 

goes over by the substitution x — tf into the linear differential equa- 

Extend the theorem to linear differential equations of the m-th 

order. 

IS. Constant Coefficients. We begin with the case of the homo¬ 

geneous differential equation of the second order, 

<1) 

where a, /J are given constants. It was early observed that the 

function e"* is a solution of this differential equation if m is a root 

of tee quadratic equation 

(2) m’+2 am-1-/8 =* 0. 

For, compute the left-hand side of (1) when y =s e"“. Here, 

dy _ 

dx 
= Tnc**, 

and htmce 

= *n*e" 
da? 

^-l-2a^-|-/8y = e"“(m* -f 2am -4- ^)- 
da? dx 

Thus we see, for example, that the differential equation 

^_6^+6y = 
da? dx ^ (3) 

tends te the quadratic 
m* — Sm -1- 6 == 0, 



DlIWEtJEHTUL EQUATIONS 

‘ffihoM roots are mi» 2, mj» 3. Hence two solutioas of (3) are e** 

and «•*. These are eridently linearly independent, and so the eeneral 
solution of (3) is 

y = + Be?*. 

Ifmginary Boots of (2). Suppose, however, that (2) has no real 

roots, i.e. suppose that, on writing down the formal solution of (2), 

m=— ee± Va® — /8, 

it turns out that «* — /3 < 0. The roots of (2) are then imagiwxry, 

as the mathematicians of the eighteenth century said. They can be 

expressed in the form 

(4) m, = —a + yV—1, mt = — « —yV—1, 

where y =« V/3 — a®. The mathematicians of that time did not 

hesitate to work with imaginary expressions like the above, even 

though they had no clear idea of what they mean, t.e. how to define 

them. They reasoned as follows. Since e“+’ = e“ e’ when u and v 

are real, the expression 

must be the same thing as the product 

e-“ 

and so the question reduces itself to that of finding out what 

means, where ^ is a real number. 

Now, the mathematicians of that time were very well acquainted 

with the expansions of the functions e*, sinx, coax by Taylor’s 

Theorem; 

e* = l-f x+—+- + 
2! 3! 

. a;* . X* 

What could be more natural, therefore, than to ask the series what 
means? On setting x=<^V—1 in the above development 

of e* and reducing the result by means of the relations 

(V— 1)' *= V — 1, (V — 1)* = — 1, (V— 1)* = — V— 1, 

fc = l, 2, Z = l, 2, 3, 4, 
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But tliese are precisely the series for cos and sin <f>. And so the 

formal work indicates that we ought to consider as equivalent 

to cos <^ + V— 1 sin <^: 

(5) e*'^ = cos ^ + V— 1 sin i^. 

We cannot insist too strongly at this point that we have not 

proved the equation (5). How can we prove anything about im- 

aginaries before we have a definition for them? We can, however, 

act hs if we had proved equation (6) and go on and reduce the ex¬ 

pression for e^‘ accordingly. We had found that this is to be con¬ 

sidered as the product and hence we interpret e*i* in the 

light of (6) by the equation: 

= «-“ cos yx V— 1 e~" sin yx. 

Si^arly, ^ ^3. _ y''Z 'i e-“ sin yx. 

Now, the sum of two solutions of the differential equation (1) is, 

by Theorem II of § 11, a solution. And the sum of e"*’ and e^, if 

it means anything, means the function 

2e“"cosya!. 

But this is a real function, and it may be a solution of (1), in spite 

of the doubtful character of its pedigree. Try it and see. Dropping 

the factor 2, set 
(6) y = e-“*cosya!; 

then ^ — oce““co8-ya! — ye'“Binyx, 
dx 

^ E3 (a* — y*) e~“ cos yx -h 2 oye“" sinyx, 

(Ha flAHing these equations after multiplying the first by j8, the 

second 1^ 2a, and observing that y* =: — a*, we find that 

g + 2.f' + S, = 0, 
dx? dx 

ix. the function (6) is proved by direct substitution, to be a solution 

of(l). 
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I& a similar maimer ve can find a second solution o£ (1). Sul>< 

tract from e“>*; the result is 

2 V— 1 e~"’ amyx. 

It is true that this result is imaginary, but only through the 

presence of an imaginary constant factor, 2 V— 1. Suppress this 

factor and consider the function 

(7) y = e"“ sin yx. 

On substituting this function into the given differential equation, 

as was done with the function (6), we find that (7) also satisfies that 

equation, and thus we have the best of all proofs that (7) is a solu¬ 

tion— that of direct substitution. For, a function that satisfies a 

differential equation is a solution, no matter how obscure its origin; 

and one that does not satisfy it is not a solution, no matter how 

Ulustiious its pedigree may seem to have been. 

We have introduced this bit of eighteenth century mathematics 

partly to give a motif for the two solutions (6) and (7); partly to 

show how mathematicians obtained true results from working with 

V — 1, long before they knew how to define that nxunber. They 

divined its importance, but they did not yet have the vision to give 

it existence through definition, as is seen from a remark of Leib¬ 

niz in the year 1702*; “Die imaginaren Zahlen sind eine feine und 

wunderbare Zufiucht des gOttlichen Geistes, beinahe ein Amphibium 

zwischen Sein und Nichtsein.” 

JEquations of the n4h Order. The method can be extended at once 

to the equation 

(8) 
daf' 

+ «i 
d’^^y 

4- — +«ny 0, 

where the a’s are real constants. On substituting y e"* we find 

that this function is a solution provided m ia a, root of the algebraic 

equation 

(9) m" -h -f- ••• -h a, = 0. 

If this equation has n real and distinct roots, mj, •••, m„, the 

general solution of (8) will be 

{10) y«=Cie*^-i- — +c„e"»'. 

If one of the roots of (9) is imaginary, 

wii =1> + ?V-1, 

• Klein, Xlementatmathematik vom hSheren Standpunkte aua, Sd ed., vol. I, 
p. fll. 
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tltiW a teOQiid i*oot will be l^e oonjugate imagiiiary, 

» OTj =a p — j V—1. 

Ciortesponding to these roots we shall hare two real solutions, 

(11) cos g*, e>* sin gx. 

The case of equal roots of (2) or (9) will be treated in the next 

paragraph. 

EaecmpU. Solve the differential equation 

da? dx 

Here, equation (9) becomes 

m* + m = 0. 
The roots of this equation are ' 

mi = 0, m, = V—1, m, = — V— 1. 

Hence = 1 is one solution, and two further solutions are 

«** cos qx = cos X, e”* sin gx = sin x. 

The general solution is 

y=! A + Bcosx H- Csinx. 

EXERCISES 

Scdve the following differential eqiiations. 

1. ^ — » = 0. 

S. 

dx* 

d*w 

dx* 

dx* 

d*y 

da? 

7 ^ 
dx* 

dx* 

dx* 

Ans. y = A^ + Btr*. 

+ y = 0. Ans. y so^cosx-f-Bsinx 

+ 3j^-10y*0. 
dx 

4. ^ + ^_y = 0. 
dx* dx ^ 

+ 4^ + 13y=:0. 
dx 

6. 

c> II 

+ y«=0. 8. 
dx* da? dx 

1 ««
 II 10. 0+,sg+36, = (). 

+?=«• dx 
12. g-13®+36,-0, 

— y •» 0. 14. 
da? dx 
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16. Show that ooe solution of &e differential equation 

^+«.s+ d®" ’ ~ 

where ai, •••, a., c are constants, and a, ^ 0, is the function y as t/tt^ 

16. Obtain by inspection one solution of the differential equation 

^ + 2^=4, 
da? dx 

and hence solve the equation completely. 

17. In the case of a simultaneous system of homogeneous linear 

differential equations with constant coefficients, as 

^^Cy + Dz, 
dx 

it is reasonable to try for a solution of the form: 

y = Xc"“, * = ^c*“. 

Show that two such solutions can be found if the equation 

A— m, B 

C D-m 
= 0 

has two distinct real roots, and determine the ratio, X/^ 

Apply your results to the case: 

^ = 6«- 
dx 

=s 6y — 42, 
dx 

Ana. The complete solution is: 

y a= Cie** + 4 C2e*‘, 2 = Cie** + 3 Cjc®*. 

18. Develop the theory for the case that the quadratic in m, 

Question 17, has imaginary roots. 

19. Extend Questions 17,18 to the case of a system of three equa 

tions, 

^=AiU + BiV + CtW, 
dx 

— ^ AfV. -i” B^v “i" (J%v3y 
dx 

dw 
dx 

= A,u -t- B,v + Cjto. 

Bence generalize to the case of n equations. 
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80. Bolra ^ differential equation (<ff. £x. 11, $ 11): 

-B»^4.8a!^ + 12y = 0. 
das* das 

, .diM. y =« Cixr* 4- (7,ar<, 

13. OoalinTiatioiL Equal Eoota.* If equation (2) of § 12 has 

equal roots, then each is equal to — a, and a e-** is a solution oi 

the given differential equation. 

We can guess a second solution by considering the case that the 

roots are*^ not quite equal, one being — a and the other — a + h. 

Let 
y = g-«*+**. 

Then *= e-“ - 
h h 

is a second solution of the near-equation, no matter how small h be 

taken. Now, this function is nearly equal to ase"** when h is small. 

So we are led to try this function, and it turns out on substituting it 

that it does satisfy tibie given differential equation. 

Thus we find as the general solution 

y = 4- Bx). 

If n > 2, equation (9) of § 12 may have more than two roots equal. 

It is not hard now to guess by analogy what the solutions will be in 

this case. If m be an Wold real root, then 

Vi = «"*> y2 = »e“*, . • •, y, = oj'-ie’** 

will be I linearly independent solutions. If, on the other hand, m is 

imaginary: m = j) 4- gV~ 1, then p — gV — 1 will also be a root, 

and we have each of these roots counting I times. The functions 

y,^j aa cos g®, y2j^.2 = ®*er* sin g®, it = 0,1, •.•, Z—1, 

are here 21 linearly independent solutions. 

The case that the on-equation for a simultaneous system of the type 

of § 12, £x8. 17 and 19, has equal roots is more complex; cf. Ooursat, 

Ours ^analyse, Vol. II, 2d ed. (1911), Chap. XX, § 420, p. 483. 
» 

• This case is unimportant in practice; and yet it is necessary to treat it if 
the theory is to be complete. The student may safely postpone this paragraph 
dU he ne^ to use it. 
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EXERCISES 

343 

1. Find one solution of the differential equation 

da? da? dx 
-y = 0 

by the method of S 12, and prove by direct substitution that xe* and 

3?e* are also solutions. W^t is the general solution? 

Ana. y = (oo + CxX + Cia?)e\ 

' 2. Find two solutions of the differential equation 

dal* 
+ 2 

da? 
+ y = o 

by the method of § 12, and prove by direct substitution that x sin x 

and X cos x are also solutions. What is the general solution ? 

Ana. y = {a + bx) cos a; + (c + dx) sin x. 

Solve completely the following differential equations. 

3. ^ + ^=0. 
dx* dj? 

5. ^ + 
da? da? dx ^ 

4. ^ + ^=0. 
dx* dx^ 

6. ^_2^ + « = 0. 
diB« da? 

14. Small Osoillatioiu of a System with n Degrees of Freedom. 
We treat here only that part of the problem which relates to the 

integration of the differential equations involved.* Let the kinetic 

energy, T, and the force-function, U, be given by the equations: 

2^={“r=5 

The two quadratic forms are both definite, and a,y, are constants- 

Lagrange’s Equations: 
d^_d^^dJl 
dtdq], dq^ dq^ 

give: 

(1) + ••• + = - (^i9i + ■" + 

By means of a suitable linear transformation, 

(2) 9* = fc=il, •••,!». 

the two quadratic forms can be reduced to the normal form: f 

* Cf. Appell, IftearUqva rationelle, vol. 2, p. 843. 
t BActaer, jitpetra, Chap. IS. 
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1^* + — +14*. - »fp!-- 0 < 

Bqtiatioas (1) now take on tbe form: 

(3) p’i-r\p^ 

The general solution of the system of equations (3) is obTioua, 

namely: 

(4) p^ = G*co8(rt« + p*), A: = 1, n. 

Hence the general solution of (1) will be: 

(6) = CifiH cos(ri« + pi) + ... + C,/!*, cos(r„« + pj, h = 1, w, 

where Ci, G, and pi, •••, p, are the 2n constants of integration. 

From the result just obtained it is now clear how to solve equa¬ 

tions (1) without the intervention of the transformation (2). For, 

equations (6) say that the general solution of (1) is put together 

linearly out of n solutions, each of the form: 

(6) ffi = Xi cos (rt + p), - -, g, = X, cos (rt + p). 

A necessary condition that (6) be a solution is that the n equations 

(7) (6*1 - rsa*,)X, + — + (6*, -r*a»,)X. = 0, fc = 1, n, 

admit a solution in which the X,’s are not all 0. Hence the determi¬ 

nant of these equations must vanish: 

(8) 
I'll - r*Oii, ^i, - 

= 0. 

If the r* 8 are all distinct, they form precisely the n positive roots 

of (8) and thus (8) is seen to be a sufficient, as well as a necessary, 

condition for the r^. 

It is not difficult to show by a limiting process that, when two or 

more of the r* in (3) are equal, these appear as multiple roots of (8), 

80 that, in all cases, the n positive roots of (8) yield the n quanti¬ 

ties r,^. 

When r* is a simple root of (8), equations (7), written for r » r^, 

determine the ratios of the X/s uniquely, and thus, in building up 

the general solution (5) out of such particular solutions (6), the 

&ctor of proportionality can be merged with the coefficient 

If r a is a multiple root of (8), of order m, then m of the Xy’a 

in (7} can be chosen arbitrarily. For example, any one of these m 
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Xy’s (»a be set n 1| and tbe remaining m — 1 set ss 0. We are 

t^UB led to m linearly independent solutions of (1).* 

We see, therefore, how in all cases to derive from (8) and (7) n 
solutions of the form (6), out of which an arbitrary solution of (1) 

can be constructed by means of (5). 

The variables p,, are known as the normal coordinates of the sys¬ 

tem. They are uniquely determined, save as to their order, when 

the are all distinct; but when some of the r^s are equal, an infi¬ 

nite number of different choices is possible. 

III. Geometrical Interpretation. Singular Solutions 

15. Meaning of a Differential Equation. Just as, in Integra- 

uon, our first object was to discover the devices by which the 

integrals we meet in practice can be evaluated in terms of the ele¬ 

mentary functions, so here we have studied in this chapter analogous 

devices for solving differential equations such as occur in physics 

and geometry by means of explicit formulas in the elemen.tary 

functions. We came, however, to see that an integral can be consid¬ 

ered from a higher point of view and that the integral of any con¬ 

tinuous function always exists, regardless of whether it can be 

evaluated as above; namely, the area under the curve yields precisely 

the integral. Moreover, this area may in any case be approximated 

to by Simpson’s Rule, Introduction, p. 344. 

In the case of the differential equation 

(1) 

the situation is similar. Suppose /(», y) to 

be continuous throughout a certain region 8 

of the (i», y)-plane. Then the equation (1) 
assigns to each point (*, y) ot S a definite 

direction, namely, the direction of the line 

whose slope (dy/dx) is f(x, y). We can think of these directions as 

indicated by short vectors drawn at the points. 

To integrate equation (1) is to find a curve drawn in S, such that, 

* Here, as in so many other cases in physics, a thoiotigh knowledge of Linear 
Dependence is indispensable for an understanding of the subject in hand; qf. 
Bdoher, Algebra, Chaps. S, 4, or better still, Bdoher, Annals of Math., set, 2, 
V(d. 8 (leoi), p. 81. 
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at each one of its points, it is tangent to tiie Teotor irMoh pertains 

to tbat point It -w^onld seem likely that such a curre exists through 

each pomt of S. For, if we start at any point (Xt, yo) of 8 and go 

aloii^r the veetoi at that point to a point (zi, y^) n^ ; if from here 

we proceed along the vector pertain^ 

ing to this latter point to a point 

(^^2) 3. little further on; and if 
we continue this process, we are 

thus led to a broken line, whose 

, slope at any one of its points* 

differs but slightly from the value of f(x, y) at that point. It is 

natural to expect this line to approach a certain curve as its limit 

when its vertices increase in number, the greatest distance between 

two successive vertices approaching 0. On introducing a suitable 

restriction on f(x, y) (a reason for which will appear when we study 

singular solutions) it turns out that this is the case; i.e. that there 

y = ^{x). 

Fm. 83 

toward which all these broken lines converge, and that the slope of 

this curve at each point is that of the vector pertaining to this point. 

Analytically this means that the function satisfies the given 

differential equation, or 

The condition to be imposed on/(», y) may be stated in the form 

that fy(x,y) = df/dy shall exist and be continuous throughout 8. 

This condition is somewhat more restrictive than is needed, but it 

includes the cases of importance which arise in practice. Moreover, 

when this condition is fulfilled, the solution is unique; i.e. the 

neighborhood of an arbitrary interior point of 8 is swept out just 

once by a one-parameter family of curves, no two of which have a 

point in common. 

We note that the solution depends on an arbitrary constant, yo. 

At first sight it m%ht appear as if it depended on two arbitrary 

constants, 2;, and y^. It does; and still there is only a one-parameter 

family of solutions involved, for we get all the solutions which 

course the neighborhood of the point (Xp, y^ by holding fast and 

blowing yo alone to vary. For example, the right lines whidr hav« 

• At a TWtex, the slope of one of the linee abutting on it is just right, by 
oonstmetion. The slope of the other line is not far wrong. 
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a given slope (X *= 2, say) are given Ijy the equation 

y — y« = 2(a! —a;J, or y =» 2®+ (yo — 2*0). 

Thus the two arbitrary constants and y# are together equivalent to 
but a single arbitrary constant, 

b = yt, — 2xo. 

Example. Consider the differential equation 

Let it be required to find approximately where the axis of a; is 

cut by the solution which cuts the axis of y one unit above the 

origin. 

The student should make an accurate drawing on squared paper, 

taking 10 cm. as the unit of length and making ^ 

(i.e. 1 cm. long). 

Simultaneous Differential Equations. A simultaneous system of 

the form 

(2) ^ = F{x,y,z), | = *(a:,y,*) 

can be treated in a similar manner. Let F be a region of space, at 

every point (x, y, z) of which the functions F and * are continuous 

Draw through (a;, y, z) a line whose direction components are 1, 

F(x, y, z), 9 {x, y, z), and lay off a short vector along this line. A 

curve, 

(3) y =/(*), * = 

which, at each of its points, is tangent to the vector pertaining to 

that point, will represent a solution of the given system (2). 

Starting at any point (a,, y^, Zo) of F, we can construct a broken 

line as in the earlier case, laying off first a short distance on the 

vector at (xg, yo, Zq). From the end, (xi, y^, Zi), of this line lay off 

a short distance on the vector pertaining to (»!, yi, Zi); and con¬ 

tinue in this way. The broken line thus formed will approach a 

limiting curve, (3), which represents a solution of (2), provided 

F{Xf y, z) and ♦(», y, z) admit first partial derivatives with respect 

to y and z, which are continuous throughout F. 

The extension to the case of a simultaneous system of n equations 

in n dependent variables: 
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^ *» ■?!(»> Vu y»)t •••» ^ = -P^C*. yii •••» y«)> 

is immediate, and the existence theorem holds in that ease, toa 

Such a system can be thrown into the equivalent form: 

^ ^ = ... ^ dx, ^ ^ 
*,) Ft(Xi, xj F^{Xi, xj ’ 

or • • •, ^ = -^,(*1,-.®.). 

Through each point, (a^, •••, xj) of the region SR of the Ti-dimensional 
space, in which the functions F^ are continuous, together with their 

partial derivatives of the first order, passes one and only one curve, 

** = 4, —, ai), *: = 1, —, n, 

provided the functions Jf* are not all zero at (xj, •••, a^). 

16. Continuation. Differential Equations of the Second Order, 
and Higher. Consider the differential equation 

where F(x, y, p) is continuous for all points (x, y, p) for which (x, y) 

lies in a given region S of the (x, y)-plane, and p is arbitrary. 

Through an arbitrary point (x, y) of <S draw an arbitrary line, of 

slope p. Then (1) determines the circle of curvature of the solution 

of (1) which passes through (x, y) and has the slope p. Thus a 

small arc of the osculating circle at this point can be laid off, and 

we can proceed to build up an approximate solution by means of 

such arcs, much as in the earlier case, § 15. 

A solution of (1) will be a function, y ^ (x), continuous together 

with its first and second derivatives, and such that its graph has its 

oorvature at each point in agreement with (1), or 

(l+p*)* ^ 

If, furthermore, the partial derivatives of F (of the first order) 

exist and are continuous, then through an arbitrary interior point 

^ P®^8 a solution of (1) having an arbitrary slope, 

fgi BMd the solution is thus uniquely determined near («o, yotPt). 

We see, moreover, that the solution depends on two arbitrary 

eonstaats, which may be taken as yg and po^^yi- 
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Svxmd Method. A seocmd method of treating the differentid 

equation (1) is the following. Introduce a new Tariable, z a dyfdx- 

Then (1) is replaced by the simultaneous system 

(2) ^=Fix,y,z). 

If F(x,y,z) is continuous, together with its partial derivatives 

of the first order, the system (2) will admit a unique solution pass¬ 

ing through Thus the existence theorem for (1) 

stated just above is here proved by means of the existence theorem 

of § 15. 

The method can be extended to m simultaneous differential equa¬ 

tions of orders ni, n*, •••, n„ respectively in the dependent variables 

Vii They are seen to be equivalent to a system of 

q = m Wj -t- ••• n„ simultaneous differential equations of the type 

dx 
^ *,). t = 1, 2, q, 

and their solution depends on q arbitrary constants. 

17. Singular Solutions. Consider the differential equation 

(1) 
dx^ " 

Nothing could be easier than to integrate it by our ordinary methoda 

First, 

dx 
.±Vl-y*. 

Next, separate the variables: 

dx = ± JlL 
vT r 

Hence : T cos-»y + e, 
J Vl — y* 

and BO, finally, 
(2) y = cos (a? — c), 

— the “ complete primitive,” as the books call it, containing an arbi¬ 

trary constant, and so comprising all the solutions of (1). 

The only trouble with this result is that it is wrong. Not that 

the function (2) is not a solution for an arbitrary value of c, but in 

the assertion that all the solutions of (1) are given by (2) there is 

a blunder. 
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Let iu Btody the differential equation from liie point of -riev 
f 15. Consider the two dijfferenti^ equations 

« («) 

It is clear that any solution of (t) in a given interval o ^ x ^ b is a 
Bolution of (1); and the same remark applies to (t^). 

Equation (i) assigns to each 
point (a, y) within the strip 
— 1 ^ y ^ 1 of the (a, y)-plane a 
positive slope, and to every 
point on the boundary (y = 1, 

y «B — 1) of the strip the slope 0. If (a^, yo) be an arbitrary interior 
point of the strip, there passes through it one and only one solution, 
and to the determination of this solution the analysis above applies: 

g-vrr^, - 

f—- =s — ooa-*y 4- C, _ 
J Vl — y* 

3% = -co8-»yo + (7, 

(3) as = — co8-‘ y -f cos-' yo 4- aJo, 

where each cos-' means the principal value of the function {Intro- 
dtution to the Calculus, Chap. VIII, p. 211). 

The solution (3) proceeds forward till it meets the line y = 1 at 
A; and it runs backward till it touches the line y = — 1 at A The 
continuation of this solution to the right of A is the function 

y = i, 
or the part of the upper boundary of the strip to the right of A. 
And likewise the solution is carried backward, to the left of B, by 
the function y = — 1, or the part of the lower boundary of the 
strip to the left of B. 

We see, then, that through every interior point of the strip passes 
one and only one integral curve of (t), and solution is defined 
throughout the whole range of values for *, — oc < ® < + oo. 

Ifot so, however, with a point (xq, Pq) on the boundaxyof the atrip. 
Suppose ygs= ~-l. Then that part of any solution passing through 
(*%♦ 3h) ^111(^1 lies to the left of 3^ is uniquely determined! it is 
y x — X, But to the right we may proceed along this gn-mn K»fa fiat 

Fia. 85 

Fio. 81 
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«TOT, ti*UB having the eolation y = — 1, —oo<x< + 00; or we may 

Imve the line at any point Xi^x^, pass along the carve (3) to the 

other boundary, y = 1, and then continue forevermore on this line. 

Thus we see that through any point on the boundary of the strip 
pass infinitely many solutions of (i). 

Precisely similar results hold for (if). The solution passing 

through a point (a^, y^) within the strip is given 

hy 
(4) X = cos-i y — cos-i 

where, as before, the principal value of each 

cos~i is meant. And this solution continues 86 

along the boundary. 

The Solution of (1). We see now how to put together other solu¬ 

tions of (1) than those given by (2). First, the solutions of (i) and 

(it) just discussed are all 

solutions of (1), Secondly, 

we may start with the arc 

AB of a solution of (i), 

proceed to the right of A an 

arbitrary distance, switch 

to a solution of (it), follow the line y = —1, as far as we like, then 

switch to a solution of (t); and so on. 

Do we get, even in this way, all the solutions of (1) ? For an 

interior point (xo, yo) any solution of (1) is given either by (3) or by 

(4) till it reaches the boundary. For a boundary point (xo, yo) any 

solution, considered to the right of the point, either coincides with 

the boundary for an interval, or it has points distinct from the 

boundary in every neighborhood to the right of Xo- In the latter 

case, it must switch to a branch (3) or (4) to the right of Xg, and the 

transition must obviously be made at the point Similarly for 

the left-hand neighborhood of a boundary point. The solution of 

(1) is now complete. 

Example from Physict. Consider a simple pendulum. Introduc¬ 

tion to the Calculus, p. 373. The differential equation of the first 

order * is 

(6) 

• This is the approximate equation for snail arcs; but the reasoning applies 

eqaajj|y well to filie socomte eqnatioz^ 1. a (S^. 

Fio. 87 
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em lie tmirten down at onoe from tlie principle oi Work tmd 

&erg7. Suppose that the pendulum gets stuck when it reaches its 

highest point, and lodges there till some one releases it. This may 

happ^ each time it comes to its highest point, and each time it may 

remain at rest for an arbitrary interval of time. The equation of 

Work and Energy is the same for this oabe as for the case ordinarily 

considered, tmmely, (6). 

From this it appears that (5) regarded as the mathematical for¬ 

mulation of the problem of Simple Pendulum Motion, is not ade¬ 

quate, since (6) admits other solutions, too. The same remark 

applies to many of the deductions given in Mechanics, which are 

based on the principle of energy and operate with differential equa¬ 

tions of the first order, which are not linear. On the other hand, 

this situation cannot arise when the solution is based on Kewton’s 

Second Law of Motion and the formulation 

^-««. (or- 

This differential equation has only one solution, and that, the solu¬ 

tion of the problem. 

18. Continuation. The Oeneral Case. The central fact illustrated 

by the example of § 17 may be stated as follows. The family oi 

solutions (2) have an envelope, namely, the lines y = 1 and y = — 1. 

An arc of the envelope (a segment of either line) obviously must 

also yield a solution of the differential equation; and yet this solu¬ 

tion is not contained in those given by (2). - Such a solution is called 

a singular solution. 

We can generalize and say: Let a differential equation of the first 

order be satisfied by a family of curves, 

(1) y = ^ (*, c), 

and let these curves all be tangent to a curve 

(2) y = ^(x). 

Through any point (*0, y#) passes a curve, y = (^(aj, Cq), of the 

family (1); and the function ^ (x, Cg) satisfies the differential equa¬ 

tion in the neighborhood of the point x = x„. If the curve (2) is not 

contained in the family (1), it is called a singular solution. 

For example, consider the differential equation 
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A &unilj of solutions is seen to be 

y = (x- c)*. 

These curves are all tangent to the axis of x, and this line, y = 0, 

is seen to be a solution of the given difierential equation. But it 

is not one of the above family; it is a singular solution. 

Clairaut’B Equation. Consider the differential equation 

where /(jj) is continuous, together with f{p) and f'{p), and 

The “ general solution ” (1) of (3) can be written down at sight: 

(4) y = cx +/(c), 

where c is an arbitrary constant. Thus we have a family of straight 

lines. 

This family, however, has an envelope; for, differentiate (4) par¬ 

tially with respect to c. Chap. VIII, § 1: 

0=sa!+/'(c). 

Thus the envelope is defined by the equations 

<S) ( 

This curve represents a singular solution. 

Here, the general solution corresponds to the straight lines 

y = ca? - ^c». 

The singtilar solution is: 

or the parabola: 
* = c, y = ic*, 

2y =:x*. 

IV. SOLtTTIOK BY SERIES. INTEGRATING FACTOR 

19. Bessy’s Functions. Zonal Harmonics. The problems of 

Mathematical Physics lead to certain homogeneous linear differen¬ 

tial equations of the second order with variable coefficients which 

are very simple functions. The most important equations of this 

dass are; 
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(a) Beasel’s Equation: 

da^'x dx \ a?) 

{b) I^endre’a Equation: 

— I (1-3)2) 
(te r dx 

+ wt(m + l)y = 0. 

The first of these cannot be solved in terms of the elementary 

functions. It defines a new class of functions, the Bessel’s Funo- 

tions of the First Kind, denoted by J^(x), and those of the Second 

Blind, denoted by K^(x). 

The Series for Ja{x). On setting n = 0, Bessel’s Equation be- 

oomes; ^ , 

dx? xdx ^ (1) 

Let us see if we oan obtain a solution of this differential equation 

in the form of a power series, 

(2) y = 00 + 013)4-02®*+.... 

Writing (1) in the form 

(3) 

we compute the left-hand side of (3) by means of (2): * 

2 .laj® + 3.2o,®*+ ... +(n + 2)(u + l)o„+2®"+i + 

= Oj + 2 02® + 3 ct^s? + ... + 
dx 

xy = 00® + ai®*+ ... + 

(71 + 2)a.+,®»+‘ + 

a,®"+> + 

On adding these three equations together we obtain a single 

power series in ®, whose constant term is Oj. The coefficients of all 

subsequent terms are given by the formula; 

(n + 2) (ti + 1) a„+2 + (»»+ 2) a,*2 + o, = (n + 2Ya^t + o„. 

Set each of these coefficients equal to 0; thus 

01 = 0, 
1 

(71 + 2)*““’ 

* We sasume here without proof that a power series can he differentiated tenn- 
hy^eixEL, as if it were a polynomial. —The object in writing the general term as 
3ie one in rather than as the one in ®*, is to obtain a somewhat dmpler form 
of the relation between the coefficients of (3). 
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The first coefficient in (2), namely, Oq, is arbitrary. From (4) we 

find; 

o, = - 
22 42 62 

Furthermore, since Uj ns 0, it follows from (4) that a, = 0, Uj = 0, etc. 

Each a„ is thus seen to contain Oo as a factor, and since we do not 

care particularly what constant fiictor is multiplied into a series (2) 

which yields a solution, we will set Oq = 1, (2) then becomes the 

series which defines the function known as Jo(x): 

(6) + 

This series converges for all values of x, and it converges rapidly. 

The series for J^(x) and K^{x) will be found in Peirce’s Table of 

Integrals, p. 87. They can be verified by direct substitution in the 

above differential equation (a). When n is not an integer, J„(x) 

and /_*(:») afford two linearly independent solutions of (a), and there 

is no need of introducing a function (x) (which in this case is not 

defined). But if n is an integer, J„{x) and /-„(») become linearly 

dependent, and K„{x) is needed to furnish a second solution. 

Zonal Harmonics. Legendre’s Equation, (6), can be treated in a 

precisely similar manner. If a solution is assumed in the form of 

a power series, 

y = Oo + Oix + Ojx* + —, 

it is found that the relation 

or 

(n + 1) [(n + 2)a.+s - naj + m(m + l)o, = 0, 

— w (w + 1) 
(n + l)(rH-2)“ ' 

holds for n = 0,1, 2, •••. The coefficients Og and Uj are arbitrary, 

and we get two linearly independent solutions by setting first one 

of these coefficients, and then the oth^r, equal to zero. 

When m is a positive integer, or zero, one of these solutions re¬ 

duces to a polynomial. For the coefficients 0*+*, ••• are seen 

to vanish, and thus one of the solutions breaks off with the term 

a„x”. The other solution is not a polynomial. 

Let the polynomial solution be arranged according to descending 

powers of *: 
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coeBldento eaa be computed in terms of bf reversing the 
laet formula; thus 

o—»= 
2(2 m-1)”’ 

^ m.(TO - l)(m-_2)Xm^j) 
^ 2*4. (2m-l)(2m-3) 

It toms out to be convenient to choose as a. the numbei- 

(2TO-l)(2m-3) -..3.1 
m! 

The polynomial thus arising is known as a Zonal ^Harmonic or a 
Legendre'a Coefficient, and is written as P*(a!) ; ef. Chap. XVI, §| 5,6 : 

P fa) - - 3) - • 3 • 1 f m(w - 1) 
m! \ 2(2m-l) 

2.4 .(2m-l)(2m-3) 

In particular, 

P, = l, Px = ®, P* = i(3a!*-1), P.==^(6»»-3®). 

SO. Integrating Factor. Let M=f(x, y) and N=*f>(x, y) be two 

functions which, together with their partial derivatives of the first 

order (in particular, dM/dy and dN/dx) are continuous throughout 

a region 8 of the (as, y)-plane. The expression 

(1) 3fda: + Ndy 

will not in general be the difierential of any function u = F(x,y), 

since for this to be the case we must have dMldy = dN/dx-, cf. 

Chap. XI, § 7. 

It is, however, conceivable that, on multiplying (1) by a suitable 

factor, psz<a(x, y), the product 

p(Mdx + Ndy) 

may become an “ exact differential ”: ♦ 

du — pMdx + pNdy. 

*The following treatment presupposes entire familiarity vdth the develop- 
mentt of Chap. XI, fS 1^7. Ihis is not a technicality. There is no Aort out 
to the integrating factor, whereby an understanding (d the sul^eot matter of 
^1000 paragraphs can be avoided. 
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That Buoh a function, u =a F(x,y), exist, .it is both necessary and 

sufficient that 

^£dx 4- = pMdx + pNdy, 

or 

(3) F, = pM, F. = oK. v-P-‘ 

A pair of functions, F and p, satisfying this last pair of equations 

can be found as follows. 

Let (*01^0) be a point of S, in which not both of the functions 

JIf and N vanish. Suppose .N’(a^,yo) ^ 0. Then the differential 

equation 

^ dx N 

admits a one-parameter family of solutions which course the neigh¬ 

borhood of this point (cf. § 16), and which can be expressed in the 

form: 

(6) F{x,y) = C, 

where F is continuous, together with its first partial derivatives, 

and Fy 0.* The slope of the curve (5) at an arbitrary point 

dX Fy 

But dy/dx is also given by (4). Hence at every point (x, y) of S we 

have 

(6) ^ 

Let 

(7) 
F 

N’ 

N 

Fy = pN. 

It follows, thefa, from (6) that F, = pM, and the proof is complete. 

The factor p is known as an integrating factor. There is an 

infinite number of such factors. Thus in the case of 

ydx — xdy 

it is evident by inspection that 

1 1 1 
x»’ 

are all integrating factors. 

y»’ x» -f- y* 

* The proof of this existenoe theorem ie given in the treatment the theory 
of differential equations. 
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Let« be the fosotion eorrespcmdiQg to the partioiilar integiating 

fActor ^; let <r be any second integrating factor, and let v t>e the 

function corresponding to it: 

dv = trMdx + trNdy. 

Then 

Hence 

Zx 

Zx 

1 

citf, = aJW. 

?.<y'i!) = o 
3(*,y) 

and 

We now infer that 
<r = (l'(u)p. 

For ^ = n'(u)^, or aN=Cl'{u)pN, 
Zy Zy 

and W ^ 0. 

Conversely, let /(u) be any continuous function of u. Then 

«■=/(«)/> 

will be an integrating factor. For 

(a^ir) (%») 

vMdx + aNdy= ff(u)\pMdx + pNdy\ 
I’ 

<•,*) (•.») 
as 

and thus the first integral is independent of the path in any simply 

connected region. It defines, therefore, a function if, and 

Bv Jir Bv nr 
si-’"’ 

V * ^(w) = //(w)dw. 

Three Variables : Pdx + Qdy + Edz. That an integrating factor, 

p, should exist in this case it is necessary and sufScient that 

g(pQ)^g(pP) 
By Bz ’ Z» Zx ' Zx Zy 

These conditions cannot in general be fulfilled. It is readily seen 

that a necessary condition for the existence of an integrating 

This condition can be shown, conversely, to be sufficient; Goursat, 

Ours d’analyse math4mcUique, vol. 2, § 442. 
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EXERCISES 

353 

1. Show that all the integrating factors of 

ydx — xdy 

are given by f(^ • vhere/(M) is any continuous function of u. 

2. Determine all the integrating factors of 

(2y + cos x) dx — dy. 

S. The same question for 

(7X — By) dx + (3x + 2y) dy. 

V. Partial Differential Equations 

21. Hature of the Solution. The simplest partial differential 

equation one can well imagine is 

(1) 
du 

dx 
0, 

where ti is a function of the two independent variables y). Its 

most general solution can be written down at sight: 

(2) «=/(y), 

where f{y) is any function of y whatsoever, continuous or discon¬ 

tinuous — even discontinuous for every value of y.* 

A further example is the partial differential equation: 

(3) 
dxdy 

0. 

Since this differential equation says that 

dx\dy) ’ 

it is seen to come under the case just considered under (1), and so 

(4) |=/(y) 

is a first integral, /(y) being arbitrary. 

But here we meet with a difficulty, for we cannot go further with 

a function/(y) which cannot be integrated. We are thus compelled 

• For example, /(y) might be = 0 when y is a rational number, and = 1 
when y is irrational. 
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lieie to restriot the function /(j^) at least to being int^^rable; we will 
require that it be ccaitinttous. Let, then, 

And now 

(6) M=i?’(y)+*(®), 

where *(») is wholly arbitrary. 

Here, however, we meet still another difficulty, fpr if * (a;) cannot 

be differentiated, then d^u d^u 

dydx^ dxdy* 

and we are thus led to distinctions which it is embarrassing to have 

to make. 

In order that our attention may not be distracted at the outset by 

details which obscure the things of first importance, we will agree to 

consider only such solutions of partial differential equations of the 

first (second) order as are continuous, together with their first (first 

and second) partial derivatives, throughout a region S of the (*, y)- 

plane; or at least throughout each of a set of regions, •••, into 

which the given region S can be cut up. 

Thus we should demand that the functions F{y) and ^(x) in (5) be 

continuous together with their first and second * derivatives, except 

for isolated values of y and x, or along certain curves. 

It will be observed, in the foregoing examples, that the solution of 

a partial differential equation of the first order involves one arbitrary 

Junction, and the solution of one of the second order involves two 

arbitrary functions. This is typical for the general ease, and is 

analogous to the fact that the solution of an ordinary differential 

equation of the first order involves one arbitrary constant, the solu¬ 

tion of one of the second order, two arbitrary constants. 

22. Linear Partial Differential Equations of the Pirst Ordw. 
Consider the differential equation 

where A, S, C are any three continuous functions of (x, y, z) 

*lt happens that, for this particular differential equation, no assumption 
about tiie second dodvsBtives is needed. But in the transformations of (S) eon- 
sidned below, the second derivatives enter. 
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{hrooghout a region V of apaoe,and B not Vanishing simnl- 

taneously. Let 

(2) t=.F{x,y) 

be a solution of (1). The direction components of the normal to the 

surface (2) at any point are: dzjdx, dzfdy, —1. On the other 

hand, to each point of V corresponds a definite direction whose 

direction components are B, C. And now the given differential 

equation says that the latter direction shall always lie in the tangent 

plane to (2). 

This geometric fact gives us a hint as to how to integrate (1). 

The geometric picture of a region of space, to each point of which 

a direction is assigned, is one we have met before. It suggests pro¬ 

viding each point with a little vector drawn in the prescribed direc¬ 

tion, and then seeking a two-parameter family of curves that just 

fill out the region, each curve being tangent at every point to the 

vector pertaining to that point. These curves will be defined 

analytically by the simultaneous system of ordinary differential 

equations, 

(3) 
dx a’ dx a' 

or = 
ABC 

Their equations, therefore, can be written in either of the forms 

(4) y =f{x,x^,yt,Zo), ^ z= ^{x,Xo,yo,Zo)-, 

(4') X Xq, y^, z^), y = Xf), y^, Zq'), * =yi(f) J/o> s*o)- 

These curves are known as the chamcteristics of the differential 

equation (1). 

Let r be a curve (open or closed) drawn in V and not coinciding 

along any arc with any of the curves (4) or (4'). Through each 

point (*0) yo) *o) of r passes a curve (4) or (4'), and the one-parameter 

family of curves thus obtained forms a surface, 

(6) * = 

as will be shown presently. 

This surface (6) is an integral surface of (1). For, its normal 

at any point is perpendicular to the particular curve (4) or (4') 

through that point. The direction components of the curve ate 

A, B, C] those of the normal are — 1. Hence (1) is 

satisfied. 
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Anfl.?yfaWlly this surface is expressed as follows. Let F be gi^ea 

in parametric form bj the equations 

(6) a> =3 («), y am x(u), * = w (m). 

And no’# substitute in (4*) these three functions for re¬ 

spectively ; 

®«*/i(t,^(u),x(u), »(«)), y=/*(t, ^(«), X(w)>“(«))i *=®te. 

Conversely, any solution of (1) yields a surface z=s F{x, y) which 

is swept out by a one-parameter family of curves (4'). For, through 

each of its points passes a curve (4'), and any such curve lies wholly 

in the surface, as the student can readily prove for himself. 

We observe that the general solution of (1) depends on one arbi- 

trary jwvction. At first sight there seem to be two (or even three) 

such functions, corresponding to T. But if we cut an arbitrary 

solution of (1) by a plane, this plane curve is sufficient to define all 

the solutions near the given one, and a plane curve is equivalent to 

a single arbitrary function. 

Proof of (6). In (4) hold ®o fast, and for simplicity let ®o 0. 

Bewrite (4); 

(7) y « y (*, Vo, ao), a = h (*, yo, *0)- 

Then 

(8) y(0, yo. ao) = Vo, Vo, *0) ■= *9. 

Hence, when ® = 0, 

(9) 1^=1. 

Let the curve T be given as follows: 

1^ = 0, 1^ = 0, 
dz 

dzo 
1. 

(10) zo = <u(yo), ® = *0»0, 

where ai is continuous, together with its first derivative. On substi¬ 

tuting for Sg in (7) the value w(yo), it is seen that the first equation 

can be solved for y^ : 

(11) yo = x(*»y)> 

where x hi continuous, together with its first derivatives. Eliminate 

y« and Sg feom the second equation (7) by means of (10) and (11); 

thus (6) resolts. 

In equaticms (4'), regarded as applying to the neighborhood of a 

point (iab,yt,a(,), the parameter t can always be inken as 0, when 

AtfbO, and as y, when B ^ 0, at that point. Thus the foregoing 
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proof is general if A ^ 0; otberwise all that ia neoeBsary it to allorr 
X and y to interchange their r&lea. 

23. Goieral Partial Biffermtial Eqnation of the Pint Order. 
Consider the partial differential equation 

(1) F{x,y,z,p,q) = 0, g«|?, 
ox cy 

where F is continuous, together with its first partial derivatives. We 

assume that (as, y, z) is a point of a region V of space, that p and q 

may have any values whatever, and that Fj, and F^ do not vanish 

simultaneously. 

Let he held fast, and consider the lines through this 

point, whose direction components, p, q, — 1, satisfy (1). These 

lines sweep out a cone (N), and their normal planes through (3%, yo» *0)^ 

(2) *-*o = p(®-«o)+ g(y-yo), 

envelop a cone (T), whose generators are determined by (2) and the 

further equation (Chap. VIII, § 4, Ex. 2): 

0 = g^(»-a!„) + (y-yo) 

or 

(3) x—Xn_y — 

P Q 

Vo 

the notation here and later being; 

dF_ yr BF_ yr BF _ y 
Bx ' By ' Bz ' 

Consider now a solution of (1), 

BJF 

Bp 

(4) * = ♦ (*, y), the surface 5. 

The tangent plane to S at an arbitrary point (a^, ,yo>*o) given by 

(2), and the generator of (T) which lies in that plane lies also in the 

plane (3). Thus a direction is determined at every point of /S, and 

these directions can be visualized by short vectors, which may be 

curved so as to lie actually in S.* 

may think of the cone (T), roughly speaking, as tangent to S at 
(zg, Vot So) along the direction above determined. More precisely: let an 
arbitrary curve, T, be drawn on 5 through {Zo, Vo, *o)> and let P be a neighbor¬ 
ing point of r. Consider the distance, f, from P to the cone ( P). M T have, 
in particular, the above direction, then will be an Infinitesimal of higher order 
than if r has a different direction. 
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' We liave jbere a geomeferio pletore oltosely similar to tiiat o{ $ Iff, 

md we should expect to find the surface S swept out by a one<- 

parameter fiamily of curves, each of which is tangent at every one of 

its points to the direction pertaining to that point This is precisely 

what happens. 

The curves C of this family are determined as follows.* The 

differential equation 
(R'i do? ay 
( 1 P Q' 

where z is given by (4), has as its solution in the neighborhood of 

the point (xo, yo) ^ one-parameter family of curves which sweep out 

this neighborhood just once. And now the cylinders on these curves 

as directrices, with their elements parallel to the axis of z, cut out 

from 8 the curves C, and these sweep out the part of iS that lies in 

the neighborhood of (a^, yo, Zo) just once. 

For convenience, introduce a parameter, (, setting each side of (6) 

equal to di. Thus 

dx = Pdt, dy = Qdt. 

Furthermore, along any one of these curves C, we have 

dz =spdx -f qdy = (jpP -f qQ) dt, 

and BO (5) can be extended to read: 

(6) 
dx _dy dz , 

P~Q~pP+qQ • 

We can go further and compute dp and dq along the curve C. We 

have 
dp = rdx + sdy, dq =s adx + tdy, 

or 

(7) 'dp = (rP-f sQ)dt, dq = (aP + tq)dt, 

where 
0%, dp d*z Ssa-—r—; =^= , _ 0*Z 

dx* dx cxdy dy dx ^y® 

*It is assumed that (Zo, Voi ab) is an interior point ot V; that t(x, y) Is oon- 
tinnons, together with its partial deriratives of the first order, throughout 
the neighborhood of the point (*oi Vo): that zo = *(zoiVo), Po = Vo), 
go = 4y(xo', Vo); and that the partial deriTatires of F, not only of the first, but 
also <A the second order, are continuous functions the five arguments in the 
n^ghborfaood of (at», pot go)- Finally, lot (Chap. VIII, § 4, Ex. 2) 

F„P*-3F,„P<2 + F„<2»#: 0. 

4 It ls»i^ns thsit the letter t is used here in. two senses; but no oonlualoii. 
wQl arise. 
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On tile otiier band, equatien (1) ie satisfied identically in x and y , 

by the function (4). Hence, differentiating (1) partially with r^ 

spect to X and y sucoessiTely, we have; 

j X-\-pZ+rP->r sQ = Q, 

I T + <lZ + sP + tQ = 0. 

From (7) and (8) it appears that 

X+pZ + ^ = 0, r+gz + § = o. 
dt at 

Thus equations (6) can be extended once again and we have: 

(Q\ dx_dy_ dz _ -dp 
P Q pP + qQ X+pZ Y+qZ 

This is a system of five total differential equations in the five 

dependent variables *, y, z, p, q and the independent variable (. 

They define a family of curves in the five-dimensional space of the 

variables x, y, z,p,q: 

f a; =x./i(<; iBo,yo, Zo,J5o, ffo)) 

y=/i( “ )» 

(10) z=/,( “ ), 

P=U “ )» 
.?=/.( “ )• 

It is assumed that f = 0 corresponds to x = xo, y = yoi •"> ? —9o- 

Characteristics. Equations (10) define what is known as the fam¬ 

ily of characteristics of the given differential equation. The first 

three of these equations determine a curve C through (Xq, yo> ®o)> 

and the last two assign to each of its points a definite normal (with 

the direction-components p, q, — 1) or a definite tangent plane per¬ 

pendicular to tius normal. We can combine both these conceptions 

into one composite picture by thinking of the curve C as embedded 

in a narrow strip of surface such that, at each point of C, the tan¬ 

gent plane to the surface has the orientation belonging to that point. 

Such a strip is called a characteristic strip. We shall say that it lies 

in the surface S, and we can think of iS as made up of a one-param¬ 

eter family of such characteristic strips. 
Thus far, a definite solution (4) of (1) has underlain the entire 

treatinenti We will begin now at the other end, starting with an 
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family of chaTaoteristic strips, ami inquire hiom 

most s^meial solution of (1), of the type (4), can be built up otft 
of iiuun. 

Si. Intsgntimi by Chanotariatios. Let 9: (a, b, c, a, /9) be any 

point in the fire-dimensional space of the variables (x, y, z, p, q) 

such that A ■ (o, h, c) is an interior point of V and F{x, y, z, p, q) is 

oontinuouB, together with its partial derivatives of the first and 

second orders, throughout the neighborhood of a. Moreover, 

F(a, b, 0, a, /3) = 0, but P=^F^, Q = -P*, not both 0 in 9. 

Then the system of differential equations (9) defines a four-parameter 

family of curves given by (10), which sweep out the neighborhood 

of % just once, {x^, y<„ Jh, q^) being an arbitrary point of this 

neighborhood. 

Let C be the curve in V which is represented by the first three 

equations (10) and, in particular, let Og be the curve C which cor¬ 

responds to the initial values 9. Then any solution of (1), 

(11) z = *(a;, y), 

where ♦(», y) is continuous, together with its partial derivatives of 

the first order, throughout the entire neighborhood of the point 

(a, b) and 

c =» *(0, 6), « = ^,(a, 6), /3 = ♦^(o, 6), 

must contain the curve and the corresponding characteristic 

strip. For these are uniquely determined by the initial values cor¬ 

responding to 9. 

Let Th be a plane through A, whose normal has the direction- 

components (a, /3, — 1). Then is tangent to Tg at A 

Let D be any curve through A tangent to there, but not tan¬ 

gent to C%: 

JD; z=si/>i(u), y = ^t{u), 2 = ^j(tt), 

where is continuous, together with its first derivative, and 

suA all the if'tiOys vanish; moreover, 

(13) fi(0) = «^K0)-»-/8^i(0). 

Hence ^(0) and ^i(0) are not both 0. 

We can now state the fundamental existence theorem relating 

10(1). 
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EziBTKiroa Thbobbu. There exists one and only one solution 

y,*,Pj 9) = 0, 

which satisfies the conditions imposed on the function (11) and is such 

that the surface represented by (11) contains the curve D. 

In. order to prove this theorem "we show how a one-parameter 

femily of characteristic strips may be picked out of (10) by means 

of Z> so as to sweep out the solution in question. 

Determination of pQ,q^ If a solution such as is demanded by the 

theorem is to exist, then the values of p and q along D, or po und q^, 

must satisfy the two conditions: 

(13) 
Po. ?0] = O, 

>}>l (a)Po + i/'i (w) ?o = >Pi («), 

the second being obtained by observing that (11) is satisfied identi¬ 

cally along D, and that, at any one of these points, 

Can equations (13) be solved, however, for Po) 9o ? This question 

is answered in the affirmative by the Implicit Function Theorem, 

Chap. V, § 12. For, first, the above equations hold by hypothesis 

when u=t0 and po = «j = Secondly, the Jacobian of the 

functions F and 

namely, 
Hf,h) 

^(Fo,go) 

Pq Qo 

'/'i Ct /i»e, 1 

is not zero, since its vanishing would mean that the projections of 

Og and D on the {x, y)-plane are tangent at (a, b). 

Denote these functions as follows: 

These five functions, ^*(w), then, are the values which *0, •••, qt, 

shall have in (10), The first three of them are as general as the 

curve D; the last two are a direct consequence of the choice of the 

first three. 

Restatement of the Conditions for f*(M). It is useful to restate 

the conditions imposed on all five functions independently of 

the curve D. Let 

(14) (q, - '-.'1, yjo.^,(u), «o=!^,(w), Po = («)» 
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be eoatinnooBf togeliier witii the BratdmrAtir^ in the imgkborkood 
of tlie poi£at u as 0 and take on teapeotiyely the ralaes a,d,e,es,j8 
them. Let 

(IS) 

(t) ?o)=0, 

(ii) 02! ^ 3a! 
du du ' + 9^, t = 0, u=au\ 

1 ^ 
Q 

(Hi) dx §y ^ 0, < = 0, « = 0 

1 du du 

(ui) X, y, •• • , q are given by (10), the functions 

Jo being replaced in/* by 

The theorem then is that the first three equations (10) define a 

surface which,represents a solution (11) of (1). 

Proof of the Theorem. We observe that equations (10), in which 

the substitution (14) has been made, give; 

(16) ‘i = -r-,z, by (9); 

(17) 
dx 

dv, du 
= ^i(«). 

Condition (iii) is thus seen to be tantamount to 

in*"’ 

It follows, then, from Chap. V, § 12, that the first two of the equa¬ 

tions (10) can be solved for t and « in terms of x and y, and that the 

first three equations (10) consequently represent a surface S: 

(19) z = ^(x, y), 

where ’P is continuous, together with its partial derivatives of the 

first order. Moreover, 5 contains both curves, Ca and D. It re- 

mams to show that the function (19) satisfies the given difierential 

equation, (1). 

The derivatives of this function are given by the formulas (c£ 

Chap. V,p. 160, Ex. 31): 

d(<, u)/ d(t, u) d(t,u)/ d(t,u) 
♦.(», y) 
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Conaidei, on tJie otiher hand, the equations 

(20) 

02 da; , 
dt 

_dx dy 

Zu'^^du^^du 

If these be true, then 

*.=!>. '*'v = g. 

and the proof is complete. We proceed, therefore, to establish 

equations (20). 

The first of the equations (20) is true by (16). To prove the 

second, let 

du ^du ^du 

When < = 0, 17= 0 by (16), (u). We wish to show that [7 is 0 

for all values of (t, u). This can be shown as follows. We have: 

0C7_ d^z d^x dp dx dq dy 

dt dtdu ^dtdu ^dtdu dtdu dt du 

Differentiating the first equation (20) with respect to «, we have: 

Q _ d^z d^x _ d^y dp dx dq dy ^ 

du dt ^ dudt ^ du dt du dt du dt 

On subtracting this equation from its predecessor and reducing 

by means of (16), i.e. (9), we have: 

Finally, differentiate (1) with respect to u: 

du du du du du du 

On subtracting this equation from the preceding one and reducing, 

we find: 

^=- ZU. 
dt 

It follows that, if we give to a an arbitrary value and hold it fast, 

and if we now integrate with respect to (, 

U= Uoe~h. 

But tr# = C7'(0, a) = 0. Hence U is identically 0, q.e.d 
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Sanark. The naval treatments of l^is sul^eot follorr the historic 

order of derelopment and begin with, the “ complete integral" and 

the “ general integral,” arriring late (if at all) at the characteristics. 

Valuable as the historical order is in most subjects in mathematics, 

the present one is a distinct exception, for the “ complete integral ” 

and the “ general integral ” are artificial, and do not afford an easy 

or a natural approach to the subject. The characterisiic strips are 

the key to the situation, and by means of them the “ complete inte¬ 

gral ” and the “ general integral ” can be best explained; cf. Groursat, 

Oours cParuxlyse, vol. II, 2d ed., 1911, p. 693, and Goursat-Bourlet, 

Let^ms sur Pintdgration des ^qucUions aux dArivies partielles du premier 

ordre. 

25. Extension to the Casa of n-{-l Variables. The foregoing 

treatment admits extension to the case of partial differential equa¬ 

tions of the first order with n independent variables: 

(21) ^’(*1,|>i,= = 

ef. Goursat, cited in § 24. The analogue of the curve D is a manifold 

of n — 1 dimensions: 
V 

X>: * = <#.(%, —, u_i), w.-O, k = 1, —, n, 

which shall not be tangent at .d to the curve Gg: 

Py ••• P, 

dd> 
• « « --Jr 

dui ^ Q 

.Hi.. . . Hi. 
^“.-1 ^w«-i 

The functions pi, are determined along this manifold, and 

substituted, together with the in the equations which correspond 

to (10). The requirements (16), (fi) and (Hi), now become: 

dz ^ 

0«,’ 

dxi dx. 
(sO, u=iu, kssl, — 1. 

^liv) 

\ 



DIFFERENTIAL EQUATIONS 371 

It is then shown that the function 

Uk{t, ■vi, «,-l) 
dz _ 8^ 

duj, du^ 

whore k is any one of the numbers 1, •••, » — 1, satisfies the relation 

Hence 

C 

-{xdt 

U„ = Vlei , 

where (mi, •••, «,_i) is arbitrary, but fixed with reference to the 

integration. But C7J = 0 by hypothesis. Hence vanishes iden¬ 

tically. 

Thus is proved the theorem that there exists one and only one 

solution of the given differential equation of the form 

where together with its partial derivatives of the first order, is 

continuous throughout the complete neighborhood of the point 

(oj, •••, a„), and where the manifold here represented contains both 

Cg and D. 

26. The Equations of Dynamios. It is the theory of the solution 

of the partial differential equation (1) or (21) by means of the char¬ 

acteristics and the so-called “ complete integral" that forms the 

foundation of the treatment of the motion of a material system with 

n degrees of freedom according to the methods of Hamilton and 

Jacobi. The completion of the mathematical theory is found in 

Goursat. i. c. (§ 24 above). The dynamical problem is discussed in 

Appell, Micanique rationed’, vol. I, 2d ed., p. 650, and vol. II, 2d 

ed., p. 407. These methods have recently again come into promi¬ 

nence through their use by *he physicists in the study of the atom; 

cf. Sommerfeld, Atomic Si,ru<^ure and Spectral Lines. 

27. The Partial Differential Equations of Hathematical Fhynos. 
We have met Laplace’s Equation: 

(»•) 
Sht ■ ^ 0 

in the aftracfion of gravitating matter and in an electric or magnetic 
field of force, u denoting the potential function; again, in irrota- 

tional flew of an incompressible fluid, u denoting the velocity potea- 
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tial; aod still again in the steady flow of beat or electricity in a 
homogeneous, isotropic conductor, — the general equation for any 

(umteady) flow being 

<*•) 
j j ffltt d^u . d*u] 

dt~ \da^ dy^’^dz^l’ 

where u denotes the temperature or the potential. 

The equation of the vibrating string is found to be (Chap. XV, 

S 7 and Chap. XVII, § 11): 
&hi 

(Hi) 
dx^' 

where u denotes the distance of any point of the string from its 

position of rest, the motion being either transverse or longitudinal 

The equation of the vibrating membrane, 

[dx^^dyi]’ 

« denoting the transverse displacement, and the sound equation. 

where u denotes the velocity potential of the vibrating medium, 

are deduced by Hamilton’s Principle, Chap. XVII, § 11. 

The foregoing are all linear partial differential equations of the 

second order, and they, with others like them,* form a set of equa¬ 

tions known as the Partial Differential Equations of Mathematical 

Physics. They are treated by various methods, notably by develop¬ 

ment into series, by definite integrals, and by integral equations, 

and their discussion forms an extended theory. We take this occa¬ 

sion to give an example of the first method, since it affords a 

natural approach to Fourier’s Series. 

Consider the problem in the flow of heat, formulated in Chap. XI, 

§ 16, as the typical boundary value problem for Laplace’s Equation 

in two dimensions. This problem calls analytically for, a function, 

w, continuous within and on the boundary of the circle 

X* y* = 1, 

having continuous partial derivatives of the first and second orders 

which satisfy Laplace’s equation 

vThe partial dilterestlal equations of the vibrating rod and the vibrating 
l^ate (Chap. XVll, 111} are also linear, but of higher order. 
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dx^ dy^ ’ 
or 5^ + ?i£“4.i^*0, 

Sr® r dr r® Sfl* 

within the circle, and taking on an arbitrarily prescribed set of con¬ 

tinuous boundary values, f{6), on the circumference, C: 

(2) u\a=m. 

The following plan of attack is important in applied mathematics. 

Seek first special solutions of Laplace’s equation, written in polar 

coordinates, which shall be of the form: 

(3) u = R®, 

where B is a function of r alone, and @ a function of 6 alone. Sub¬ 

stituting in (1) we have : 
^.IdR ^ 

^[d^R .IdRl.Rd^® dr^'^rdr tW® 

L dr® r dr J r® <W® R 0 

r® 

Since one side of this equation is independent of 0, and the other 

side, independent of r, it follows that each side must be constant; 

set this constant = n*. We are thus led to the two differential 

equations: 

(4) 
d®0 

d^ 
+ n*0 = 0, r®—-f-r—-n®i? = 0. 

dr^ dr 

The solutions of these differential equations are: 

(6) 0 = a cos -f 6 sin nd, 
R = Ar" + Br-", 
R = A + Blogr, 

0 < n. 

n = 0. 

Since the function we wish to represent is continuous at the centre 

of the circle, we should look askance at a solution (3) which became 

infinite there, and so we set B — 0. 

Moreover, 0 must be periodic, for its value is the same when $ is 

increased by 2ir, Hence n must be an integer. This properly of 

the periodicity of 0 also justifies our choice of the above constant as 

positive, = n®. If we had taken it as negative, = — n®, the corre¬ 

sponding differential equation in 0 would not have yielded any 

periodic solutions (0 0). 

Let n run through the values 0,1, 2, •••, Then the sum 

(6) 2^r"(a, oosntf-f 6,sinntf) 

is a solution of (1), and the infinite series will be, too, if it converges 
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properlj. Suppose it dotffi. Then, aloi^ C, we shall hare rsl» 

aud txom (2) and (6) 
«D 

(7) f(9) = ^ (ffl„ cos nd + sin n$). 

This last equation suggests the plan of attack. Begin by deyelop- 

ing the function f{0) into a Fourier’s series (Chap. XVI, § 1), thus 

determining the coefficients a, and in (7). Next, multiply the 

general term of (7) by r". The series thus obtained will be the solu¬ 

tion of the problem: 
to 

(8) «= ntf + 6, sin n£f), 

prorided the series converges properly; for (a) each term in the 

series satisfies the partial differential equation (1) throughout the 

interior of the circle; and (6) the limiting function u takes on 

the prescribed boundary values when r = 1. 

The questions of convergence here are not simple, and their study 

forms a large and important chapter in modern analysis. The re¬ 

sults show that in all casos in which the conditions imposed on the 

problem are such as are of interest in physics, the series do converge 

and thus the physicist may apply the method with confidence that 

it will yield correct results. Cf. Byerly, Fourier’s Series and Spher¬ 

ical Harmonics, and the recent work of Hilbert and Courant, Me- 

thoden der matkemalisehen Physik. 

EXERCISE 

The differential equation of the vibrating membrane is 

dp 

Consider a drum-head vibrating so that points initially equi- 

distsuat from the axis always lie on a circle whose plane is perpen- 

dieular to the axis smd whose centre is in the axis. On introducing 

polar coordinates we see that du/d$ => 0, and hence 

8*u __ j 1, 11 
dP (r dr \ 

Apply to this equaMon the method set forth above, letting 

u^TM. 
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Show that an infinite sequence of particular solutions is obtained if 

—+ A.Sa*T = 0, ^ + = 
a? d'fi r dr 

TS ss (a* cos A,*of + 6* sin X^al) Jg (Aj,r). 

The given initial conditions are: 

«!<-=/«. I7I =«#•«, 
where /(r) and <^(r) are continuous, and 

/(A)=0, <f>(l>)=0, 

h being the radius of the drum-head. For convenience, set ht=l. 
Now, develop /(r) and <ft(r) as follows : 

«n • 

13 3 

where X<„ Xi, ••• are the positive roots of the function Jo(x). Thus 
the series 

« = ^ (0* cos X^ot -t- sin X*ai) Jg (X^r) 

will give the desired solution provided it converges suitably. 
Explain the reason for choosing the constant here as X’, and not 

-X*. 



CHAPTER XV 

SLASTIC VIBRATIONS 

1. Simple Hamonio MotioiL The simplest case of oscillatory 

motion about a position of equilibrium is that of Simple Harmonic 

Motion, studied in detail in the chapter on Mechanics, Introduction 

to the Calculus, p. 364; of. in particular Ex. 7, p. 368. 

This case is typical for the great majority of systems with one 

degree of freedom (one coordinate) such as one meets in physics, so 

far as a first approximation is concerned. Even continuous media, 

like a vibrating piano string, can obey this law, and a study of their 

naotion in this simplest case is often a convenient approach to their 

theory. 

The differential equation which dominates simple harmonic 

motion is 

(1) 

We solved it at the time by a method which was useful and sug¬ 

gestive at that stage. The method best adapted for the study of 

the problems of this chapter is the one set forth in Chap. XIV, § 12. 

Setting x=c"« 

we find, for the determination of m, the equation: 

7n* + n* = 0, 

and hence the general solution of (1) can be written in either of the 

forms: 

»= AcostU-f Ssiunt or a: = Ceos (wt-f y) 

[x = (7 sin (nt + y)]. 

T%e Period. The period of a half-oscillation is seen to be v/n; 

the period from phase to phase is 

The amplitude is constant and =20. 
376 
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A second approximaticm is introduced when we take darnfing into 

account. This dissipative force is due to the resistance of the at- 

mosphere, or the v^pcosity of the substance, or other similar causes. 

It is studied in § 2. 

Finally comes the case of forced vibrations, studied in § 4 in its 

simplest form. 

EXERCISE 

Show that the velocity with which the particle passes through the 

point of equilibrium is proportional to the amplitude, and compute 

the kinetic energy which it has at that point. 

2. Damping. The physical picture which it is convenient to use 

in these paragraphs is that of an elastic wire, or spring, its upper 

eftd fastened at a point, A, and a weight wi attached to its lower end. 

Then 

(1) = 

where I = AB is the natural length of the string, 0 is the point of 

equilibrium, BP = s, and BO = Sq- Let OP = *, or 

(2) X = 8 — Sq. 

The damping is a force which acts in the direction opposite to 

that of the motion, and which increases with the velocity. The sim¬ 

plest mathematical formula which will yield such a force is 

A 

where A: is a small positive constant. And now it turns out 

physically that, in the case of small oscillations about the 

position of equilibrium, this formula gives a satisfactory 

approximation. 

From Newton’s Second Law of Motion, Introduction to the 

Calculus, p. 348: 

(3) 
d^s 

T- 

From (1) and (2) we have 

I 

B' 

[me 

(B~ dt’ 
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Hoaee ($) msi be imttffli: 

or 

w 

^cPx ,dx 
WI-—= — —as — *—<, 

d<* I cW’ 

<*** ,<?»,« ft 
-+.-+„.«=0, 

vhere K = 1c/m and n='\/k/ml. 

Thus we have the differential equation of simple harmonic motion, 

§ 1, (1), to which the damping term, « dx/dl, has been added. 

To integrate equation (4) let a! = e"'; Chap, XIV, § 12. The equa¬ 

tion for m becomes: 
sn* -f- X m n® =s 0. 

^nce X is small, the roots are imaginary. Let 

v = — }x*. 

The general solution of (4) can now be written in the form: 

— 

(6) x= Ce * cos (vi -h y), 

where O and y are the constants of integration. 

EXERCISE 

Show that, if the particle is started from a point at which a: =» a 

with a velocity equal to u when t = 0, 

Choosing y so that 0 ^ y <v, find C. 

S. Dismuiioa of the Besult. From the solution (5) of § 2 we see 

that, no matter how the system be set in motion, the particle passes 

periodically through the point 0 of no force, the period being v/v. 

But the period from phase to phase is twice as great, or * 

(6) T 
2;r^ 

V 

Since x is small, we have (cf. Introduction to the Calculus, Infinite 

Series, p. 413, (2)): 

1 
V 

« We are here using the letter T for the time corre/^nding to a complete 
period. 
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Henoe the period (6) differs from the period the same system has 

when there is no damping, § 1, (3), by a small quantity of the tecond 
order, referred to x/n as of the first order: 

^ ^ I ^ quantity | • 

The amplitude of the oscillation dies down, owing to the expo* 
nential factor, and approaches 0 as its limit 

4. VoTced Vibraiioiui. The phenomenon of forced yihiations is 

familiar to the' race through varied manifestations. A regiment of 

soldiers, in crossing a bridge, is commanded to break step. The 

chances are that it is unnecessary to do so. But if the natural note, 

or period, of the bridge should be about the same as the beat of 

their steps, serious consequences might ensue, for the bridge could 

be brought into violent vibration. 

We are told, too, how the piper fiddled down the bridge by strik¬ 

ing the note of the cables, and the walls of Jericho are reported to 

have fallen in a similar manner.* We have all had the experience 

of sneezing in a room where there was a banjo, and then hearing 

the banjo sneeze, too. 

The tides form another example, for they are due to the attraction 
of the sun and the moon. 

One of the cheerful recollections of my school days is that of 

shaking the room in the old Rice Grammar School in Boston. A 

child, sitting at his desk, with the ball of the foot on the floor could, 

by causing the leg to move up and down with a period nearly equal 

to the natural period of the floor, produce vibrations most disturb¬ 

ing to the lady school teacher. 

* JoShua vi. 30. It was Mr. Fulton Cutting who oaDed my attention to this 
(act years ago in Mathematics 5. 



CALCULUS 

Tbe i^usnomenon can be stodied effeotirely matiliematitadlj by 

means of the following experiment. 

X^et & soft spring be attached from below to the weight of $ 2, and 

let the lower end of this spring be driven periodically up and down. 

Thus a periodic force is impressed on the weight, and the motion 

which ensues is called 3. forced vibratioiu 

Imagine a plate which can move vertically 

and which is provided with a horizontal slot. 

Behind the plate is a crank which is driven with 

uniform angular velocity in a plane parallel to 

that of the plate. The crank carries a pin which 

passes through the slot, thus causing the plate 

to move up and down. The depth of the plate 

below its position when the crank is horizontal 

to the right (t = 0) is 

c Bin pt. 

It is to this plate that the lower end of the soft spring is 

attached. Let 
r = x'i 

(r 

be the tension in the soft spring. Kewton’s Second Law 

becomes: 

(1) 

From the figure we see that the stretched length of the 

soft spring can be expressed in two ways: 

V+8'=QG' + (fS + ffP, 

where C" denotes the position of the lower end of the soft 

spring when f = 0. Now, 

QC' = «8ini)(, (7^ = r, WP^WO-x. 

Moreover, since 0 is the point of no force, 

mg-)BO + ^BfO = 0. 
I v 

(2) mg + or 

Hence the right-hand side of (1) becomes: 

(8) mg^^(SO + x)+f(m-x) + ^eBmpt-.k^. 

Xhns (I) rednoes by the aid of (3) and (2) to 
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w 
or 

(6) 

d** I A.' i,dx 

5. Integration of the Differential Equation. We can effect the 

complete integration of the differential equation which governs the 

motion, § 4, (6), if we find one single special solution; cf. Chap. XIV, 
§ 11. Now, it was long since known or surmised that the system on 

which a periodic impressed force acts ultimately gives up its own 

note and takes on the period of the impressed force. . But the phase 

of the one oscillation is different from that of the other; the tides 

lag behind the moon. 

We are thus moved to try an experiment and see if we cannot de¬ 

termine a particular periodic solution of (5), § 4, built on the simplest 

lines imaginable. So we set 

(6) x=s: A sin (pt — a), 

when A and a are undetermined constants, and try to determine 

these so that (6) will be a solution. 

Substituting the function (6) in equation (6), we find : 

A(n^ —p‘) sin (pi — a) + Axp cos {pt — a) — E sin pi. 

This equation is equivalent to the following: 

— |!®) cos a -1- Akp sin a — .Ejsinpi 

— {.4(n® — p®) sin a — .4icp cos ajcospi = 0. 

The latter equation will be true for all values of t if 

J .4(71® — p®)cos « + .4icp sin a= .B 

'I .4(71®—p®)8in« —.4(pcos« = 0. 

From the last equation follows that 

(8) tan« = —*SP.... . 
7»® —p* 

We will agree to understand by a that root of this equation for 

which 
0 < a < TT. 

The first equation (7) gives 
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^ K"*-P*)* + «*P*J sina 

Thos A is always positive. 

The experiment has succeeded. We have found a solution of the 

form (6), where a and A are determined by (8) and (9). The general 

solution of (6), § 4, can now be written down: 

(10) X = CtTV cos (i^ + y) + .4 sin (p« — a), 

where C and y are the constants of integration, and v =* Vn* — 

6. IMseusidon of the Result, (a) The system gives up its natural 

period and takes on the period of the impressed force. 

Tor, the first term on the right of (10) becomes insignificant, as t 

increases, no matter how the system was started; the second term, 

however, is periodic. 

(p) When p and v are nearly, hut not quite, equal, heats appear. 

For, there comes an interval in which the arches of the two com¬ 

ponent curves, (6) of § 2 and (6) of § 6, lie on the same side of the 

axis of X and have almost coincident bases. Thus they reinforce each 

other. Then comes, a little later, an interval in which these arches 

lie on opposite sides of the axis of x and have almost coincident bases. 

Kow, they tend to neutralize each other. And so on. Finally, both 

phenomena are flattened out as the first term on the right of (10) 

tends to disappear. 

-WjHIV—' 
Tta. 92 

If the vibration of the system is such as to produce sound, the 

sound will be loud daring the first interval, low during the second, 

then loud again, and so on, — for the intensity of the sound is greater 

when the amplitude of the oscillations is greater. Thus we have 

the phenomenon of beats in acoustics. 

(c) When p and v are equal {or very nearly so) and s/p is small, tbs 

ampiUude of the forced vibration is large, and the lag is a quarter^ 

period {neaHy). 

Since a= n* — Jk*, we have here (p » v): 

w*—tan<(ss4£, 
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and hffliioe a is Bligliilj less than 90**. MoreoTer, 

A 
sin a + j>*8ina|_ ^Vl»y J / P 

or A is nearly inversely proportional to x/p. 

Now, in the system described in § 4, JS is small. If, however, 

JS?/p* is not small in comparison with k/p, the value of A will be 

large, and thus the system on which the periodic force is impressed 

will oscillate violently. This is the case in which the natural period 

of the bridge is nearly the same as the period of the force im¬ 

pressed on it by the regiment; or the case of the banjo that sneezes 

sympathetically. 

For a further study of the subject of these last paragraphs the 

student is referred to Lord Rayleigh’s Theory of Sound, vol. I, 

Chap. 3, and to Helmholtz, TTieoretische Physik, vol. 3, pp. 1-71. 

7. The Differential Equation of the Vibrating String, Consider 

a perfectly flexible homogeneous string of uniform density, which 

obeys Hooke’s Law, and which has its two ends fastened at two 

fixed points, A and B, further apart than the natural length of the 

string. The string is given an arbitrary initial displacement, sub¬ 

ject merely to the conditions that it is nowhere stretphed beyond 

the elastic limit and that it is nowhere slack, and that certain re- 

^ quirements of continuity are observed. To determine the subse¬ 

quent motion. A plucked violin string, or a piano string, struck 

by the hammer, suggest the sort of problem that is meant. 

Hooke’s Law. Let lo denote the natural length of the string, and 

let li n AB (Fig. 93). Then the tension is given by the formula: 

(1) 

In particular, the tension in the string at rest is 

(2) 
h) 

Let 9 be the coordinate of any point P of the string when in 

equilibrium, measured from A, or x = AP. Consider a segment 

PP'imAx, and let h be the unstretched length of this segment. 

Then 

(3) 
Ax—h 



m cAwchva 

Xiet thfi «Bd A of tiie stiing stsU be held fast, bat let tibe othei 
eod be pulled out to a poiot G.\ liet Q, with the coordinate $, be 
the point into which P is carried. The segment PP, of length Ax, 

goes over into QQ', of length A(, and since the natural length of 
QQ' is also h, we hare for the new tension 

? „ (4) 71 = 
X x*&x 

SSL 

T,=.x- 
h 

t s+^t 
Via. 03 

■c Eliminating A between (3) and (4) 
gives: 

(S) 

Let Ax approach 0: 

(6) 
(M-'> 

Tt= Tt^ + k 
ax 

Let u denote the distance PQ, or 

(7) a = (-x. 

Then 

(8) n=Tx + (r, + X)f^. 
ax 

This last equation expresses Hooke’s Law for the tension at an 
arbitrary point P in terms of the constants Tj and k and the rate of 

stretdiing, du/dx, at P. In this form, the law admits extension to 
the case of variable tension such as arises in a vibrating string; cf. 
Formulas (16) and § 8, (6), below. 

Longitudinal Vibratione. Consider now the particular case of the 
general problem proposed above, in which the string is displaced 
along its own line, the ends remaining, fixed; and then released. 
This initial displacement is defined by an equation 

(9) f =/(*), 

where / is a continuouB function. We 
will assume, furthermore, that / has a 
dmvative which is also continuous, ex- 
c^t possibly at a finite number of 
points, at each of which a forward derivative and a backward deriva¬ 
tive exist. 

Our problem is; To determine the position, at an arbitrary instead 

t, of that point of the string which has the coordinate x when the string 

is at rest in egu&ibrium; f.e. to detormine the functions 

Fio. M 
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i = u=iu(x,t), 

xrhere u and | are connected by (7). 
To do this, consider a segment QQ' of the string, and isolate this 

system. Let PP' be the corresponding segment when the string is 
in equilibrium. Its mass is m = pAz. Its centre of gravity, is 
given by the formula 

(10) 

f+Af 

p(()(di 

m 

where p(() denotes the density at any point ( of QQ'. 

Change the variable of integration from i to x. Then 

where p is the constant density of the string in equilibrium. For, 
the mass of the string from A to any point ( is 

/ p{()di = px. 

Thus,(10) becomes: 

(11) ml 

Hence Ki)g=P- 

== J'p((«’> 0 dx, 

where t is arbitrary, but constant. 

Motion of the Centre of Mass. It is a fundamental law of mechan¬ 
ics that the centre of mass of any material system (system of par¬ 
ticles, rigid body, or even the Mississippi River) moves as if all its 
mass were concentrated there and all the forces were replaced by 
equal forces acting there. 

Applying this principle to the segment QQ' of the string, we have: 

(12) 

p p' 
-t- 

m^=r-T. 

<J O' 
T £ £*AJ r 

Fia. as 

If, now, we assume that £(», t) is, together with its partial deriva¬ 
tives continuous in the two independent variables as and t, 

then the integral (11) can be differentiated by Leibniz’s Rule, Chap. 
XIX, § 1, and we have: 
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(18) m §!i= 
at» 

d* =BpA!e(ii(» + ^^> ^)» 0<fl<l 

On tlxe other hand, T(x, <), and 

r'--T= T(x 4- A*. «)— !’(*. 0 =■ Aa!r.(aj + tf'Ax,«), 

if, as we will assume, r(a!, t), together with BT/dx, is continuons in 
(», t). Thus (12) becomes: 

(14) =A*r,(x + 8'Aa!,<). 

Bividiug by and allowing Ax to approach 0, we find: 

(16) 
* dt^ dx ’ 

or 8*« ^JL. 
dx 

As yet, no other hypothesis than that of oontinuity (including the 
derivative) has been made regarding T. We now assume Hooke’s 
Law, which here takes the form: * 

(16) c — Ti + X. 

Thus, finally, we obtain from (16) 

(17) S*u . 8*tt 
a* 

c 

p 

This is the equation of the vibrating string. It is exact, if Hooke’s 
Law is exact, no approximations of any sort having entered. There 
are, however, certain implicit restrictions, which consist in the as¬ 
sumption that du/dx never becomes so large that the elastic limit of 
the string is surpassed j and also that the string never becomes slack 
and buckles. 

8. Continuation; the Oenenl Caw. Let the string now he dis¬ 
placed in any curve, suitably restricted with respect to continuity, 
and let its form be given, at any instant after its release, by the 
equations: 

(1) ( = ((ps, t), 1) =s ii{x, t); 

the motion to take place in a fixed plane. Ijet 

Us=i-X, Vs=17-0. 

* This last statement Is not a mathemattoal Inference, but a new physiosl law; 
suggested, It is true, by tiie mathematical deduction of (8) from (1). 
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CkmsidAt aa axo PP' of the striog. The external fOToes aoting ou 
it are: T at P and T at P*, each along the tangent. The motion 
itB centre of gravity is given by the equations: 

(2) nt^mBT'oosf' — Tcost; 
OT* 

T sinr' — Tsinr. 

Fat If we have: 

/ p(8),(x,t)ds 

Fio. 96 

m 

Here, t is constant, and da is given by (1): 

(3) = + 

p (b) da = p dx. 

•+AjI »4-Aa 

J'p(a)ijda~ J* prfdx, 

Moreover, 
Hence 

(4) 
„ a-f ^ 

\^dx = ^x.p^ 
^ ^ dt^ (.+»a.,o 

On substituting this value in (2), dividing by Ax, and taking limits, 
we have: 

(5) = 

Hooke’s Law here takes on the form, cf. (6), § 7: 

(6) 

Thus 

T= (T^ + X)^-X = cVI+^-X, 

Tsinr = C)j,- 

c «i Tj A. 

On introducing « and v we have: 
v~(;-hv! 

(7) 
8^v 8 r Xu, = 5- CV.- * ■ - • 

V(i + «.)* + V(l + < 

The corresponding equation for is: 

(8) 0»« 
* 8P ' ®»L v(i+«.)»+td 
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^uation (7) is ordinarily replaced by an ap> 
^mimate eq^oati^ in case u, and v, (and benoe also «) are numeri* 
eally small. 

L.- . % ... =_ + + 
V(l + U,)* + li V(1 + U.)* + W* [(1 + „J3 + «f]l 

Dropping terms of the order of magnitude of u, and v, -ve have: 

(9) 

Equation (8) becomes 

(10) 

— =a* — 
at* “ Sas*’ 

g*M_ 18 

2<* da?' 

c?=sTx. 

P 

fri — ~b ^ ■ 
P 

EXERCISES 

1. Show that, when the string vibrates in three dimensions and 
we set 

vi = i — x, “B = ij, *« = £, 

equation (7) becomes 

(11) o^zs—fcv_^_ 
dfi dx\_ * V(1 + «,)* + vf + M>* 

Write down the other two equations. 

a. Show that equations (7) and (8) hold when p is any continuous 
function of x, and also when the end B is not fixed, provided that 
no external forces act along the string. 

8. Show that, if there is a slight damping, which is nearly pro¬ 
portional to the length of a short arc and to the component of its 
velocity perpendicular to the axis of *, and is nearly perpendicular 
to this axis, the approximate equation for small vibrations becomes: 

(12) , dv ,d^v 

4. An inextensible heavy chain hangs from a fixed point, A, and 
is displaced in a vertical plane. If gravity and the force at A are the 
only forces which act, show that the motion is governed by the dif’ 
ferential equations: 

P 
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6. For slight displacements, show that the appi^oxUsate equations 
in Question 4 are: 

T=gp(l-z), 

or, on setting i — a: = x', and then dropping the accent: 

at* ^axV 8xj 

6. A heavy uniform string of natural length I, obeying Hooke’s 
Law, hangs from one end, at rest under gravity. Show that it is 
stretched by the length gpP/(2k). 

7. If the string of Question 6 is flexible, and if it vibrates in a verti¬ 
cal plane, find the differential equations which govern the motion. • 

9. The Differential Equation of the Vibrating Hemhrana Let 
an elastic membrane, like a drum head, be clamped along a plane 
curve. Let it be displaced and released. To determine the differ¬ 
ential equation of the motion. 

Hitherto we have derived the differential equation without making 
approximations, and we have proceeded from it to the approximate 
differential equation. In the present case, this course would involve 
too extended a treatment of the theory of elasticity. We will 
confine ourselves to the simplest case, assuming that the motion of 
each point of the membrane is orthogonal to the plane of the bound¬ 
ing curve, C', that the displacement, u, of the points of the mem¬ 
brane, together with du/dx and du/dy, is small, the (x, y)-plane coin¬ 
ciding with that of C] and finally, that the tension, T, is the same 
in all directions at any given point, and is constant at all points. 

Consider a piece, 2, of the membrane, whose projection on the 
(x, y)-plane is S. For the motion of its 
centre of mass we have approximately: 

(1) m 
dt^ 

T~ds, 
on 

where n is the outer normal to r in the 
(x, y)-plane.* 

u 
n 

t 

Fio. 97 

• We cannot properly speak of the “ derivative along the outer nonnai ” in 
this case. What we mean by this expression is the negative of the derivative 
along the iimer normal. 
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,By Qka>p. XI, $ 4: 

On tii« otiier lurnd, 

mu an 

Hence (1) becomes: 

Since S is arbitrary, it follows that 

and this is the differential equation of the vibrating membrane. 

EXERCISES 

1. If there is damping, represented by a force per unit of area 
proportional to du/dt and at right angles to the plane of C, show 
that the differential equation will be: 

S. If the membrane is heavy and flexible, and the axis of u is 
directed upward, show that 

8. Consider the case of variable tension, T, but assume that, at 
any point, the membrane “ pulls equally in all directions." Define 
accurately the specific tension. 

4. Write down the accurate integral which corresponds to the 
approximate integral on the right of equation (1). Hence derive the 
approximate integral. 



CHAPTER XVI 

FOURIXR’S SERIES AITD ORTROGORAL FURCTIORS 

1. Formal Derelopmeat into a Fonrier’i Series. By a Fourier*a 

Series is meant a series of the form: 
_ SB 

(1) y(a«C08na! + 6,8inna!). 

Its terms all admit the period 2ir, and so it is sufficient to consider 
the series in an interval of length 2v. The simplest such intervals 
are 
(2) 0 ^ a; < 2 IT and — v < ® ^ 

Let /(*) be a function which is continuous in the second of these 
intervals, or has at most a finite number of 
finite discontinuities as shown in the figure.* 
It is convenient now to extend the definition 
of the function to all values of x by the property 
of periodicity: 

/(x + 2ir) =/(x). Fio. 98 

It is a theorem, the proof of which cannot be taken up here, that 
such a function can be represented by a Fourier’s series: 

(3) /(x) = ^Oo + Oi cos X + 6i sin X 4- o, cos 2x 4- 6, sin2x 

4- 0*0083x 4- 6, sin 3x 4- •••, 

i.e. this series, when the coefficients are properly determined, will 
converge for every value of x, and its value will coincide with that 
of the function at the point. 

* More precisely, it shall be possible to divide the interval into a finite num¬ 
ber of segments by the points xo= — w, Xi, x,-i, x, = r such that, in the 
interval Xt-i < x < x* the function and its first derivative are finite and continu¬ 
ous, and each approaches a limit at either end of the interval. Finally, at a 
point of discontinuity, the function shall be given the arithmetic mean of the 
two limiting values which it approaches from either side ; and its value for x == « 
shall likewise be the mean of the two linUting values when x approaches — r or w. 

391 
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*It is furtiier shown that, when the above seri^ ifl mnlti}^ed by 
cos «ic or sin nx, the new series can be integrated terro-by-^erm (i.e. 

just as if it were a finite sum) throughout the interval (— w, v). 

This last property enables us to compute the coefficients. Observe 

that 

(4) J Biamx coanxdxs= 0, ^ smmxamnxdx = 0, 

—tr - jr 

ir 

^cosmxcoanxdx = 0, 

—w 

where fn, n are any two integers, positive or zero, in the first relation, 
but in the second and third, For, 

sin mx cos na; s= ^[ain(m — n) a; 4- sin(m n) x], 

sinnu; sinnx = ^[cos(m — n)a6 — cos(m + n)*], 

cos mx cos nx = ^ [cos (m — n) x + cos (m + n) x]. 

Moreover, 
IT 

(6) Jsi sin* nx dx =s jr, cos* nxdx as IT, 

On nmltiplying equation (3) through by cosnx, n as 0, 1, 2, 
and integrating the resulting equation from — w to tt, all the terms 
but one on the right drop out by virtue of (4), and we have: 

» W 

J'f{x) cos nx dx =a oos* nxdx^ ira^. 

— It —W 

Similarly, on multiplying through by sinnx and integrating, we 
have: 

//w sin nxdx = sin* nxdx^ wb^. 

—w —w 

Thns the coefficients are determined, and we have: 

f 
a„asi J’f(x) COB nxdx, n as 0, 1, 2, •••; 

(«) 
6, as - J*f(x) sin nxdx, n as 1, 2, 
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Tb« wms (3), ia which the coefficients a, and b, have the values 

given by (6), is known as the fomud devehpmra of the function 

/(*), for this senes exists in form, quite apart from the question of 

whether it converges and represents the function. 

Example 1. Let/(a!) = a:, _ir<x<T; /(ir) = 0. Then 

a;da:= 0 

—IT 

and Tables, Nos. 336, 340: 

0* = - /*xcosnxdx = ~f. 
ttJ Trn^ \ 
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cos na; + n® sin n* j = 0, n = l, 2, •••; 

6, = i fxsinnxdx = ~fsi 
irj 

sin nx — nx cos nx ) = •V ^ Cos 1 

» 

Hence 

(7) 2! = 
sin 2* , sin 3® 

2 +"“3” 

Example 2. Let/(®) = ®, 0<® g v;/(a) = — ®, -7r<®^0. 

vl 

Fio, 100 

Here, 

00 = it; 

Hence 

2 cos n-ir — 2. 
&» = 0 

ifcos® cos 3* , cos 5® , 

7r[_ la 3* 62 

EXERCISES • 

Obtain the formal development into a Fourier’s series in each of 

the following cases, and plot the curve. 

1. /(®) = 1, 0 < ® < v; - - ''I- - — 
-------i—— - « 

/(®) = — 1, —B-<®<0» 
/(0)=/(,r) = 0. 

2r 

. X dfsin® 
Ans. /(®) = - 

Fro. Id 

, sinS® . sinS® . 
H-5-1-?-1- •' 

■} 

• For further examples, of. Byerly, Fourier's Series, pp. 41-61. 



CALCOLBS >• 

*• 0<a><ir; /(«)»0, —■><*g0; f{ie)t)a\w. 

S. /(as) — a)*, — «■ < a! g ». 

4. fix) = ai‘, 0<x<T-, /(x) = -Ta!*, -ir<®gO} 

/(ir) = 0. 

5. Prove that, if /(*) is an odd function, in the interval 
— «■ < X < *•; t.«. if /(— x) =—/(x) (and if /(») = 0), then a« = 0, 
n =s0,1, 2, •••, and 

/(x) = hisinx + ftj8in2x + 6, sinSx + •••. 

But if f(x) is an even function in that interval, i.e. if /(— x) 
/(x), then 6, = 0, n =;= 1, 2, •••, and 

/(x) = + aicosx + ajC08 2x + OjCosSx 4- •••, 

6. Show that a function /(x) which, in the interval 0 g x g *•, 
satisfies the conditions of the text, can be developed formally 
(a) into a series of sines; (b) iato a series of cosines; (c) into a 
series containing both sines and cosines, — depending on how the 
function is defined in the interval — jr < x < 0. 

Which of these developments are uniquely determined ? 

7. State a generalization of Question 6 for an arbitrary sub- 
interval (o', 6'), where — t < o' < 6' < v. 

2. The Oeneral Problem of Development into Series. Power 
Seriea. We have met the development of a function into a power 
series, Introdxiction to the Cokulua, Chap. XIY, p. 423: 

(1) /(*) +/'(«)(* - a) (* - a)* + - 

and we have proved that, in the case of some of the most important 
functions,like e*, sinx, coax, log(l-fx), (l-f-x)", the series 
converges, at least throughout a certain interval of values for x, and 
represents the function tiiere. But what reason was there for ex¬ 
pecting such a result, and what reason is there for expecting it ever 
to happen again? Is it not all but preposterous to expect, for 
examjfie, a series of powers, like 

x» . x* 
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irlusse terms are not periodic, and whose partial sum, s^(x), is not 

periodic, either, no matter how far n be increased, to represmit a 
periodic function, sin a? For, 

sin (x 4- 2ir) = sin x. 

Wbat is there behind it all ? 

One answer to the question is as follows. Let us give ourselves a 

succession of polynomials of degrees 0, 1, 2, •••, n, with undeter¬ 

mined coefficients, and try to determine the latter so as to get the 

best approximation possible Mar the point a. Write these polynomials 

as 
•. (*) =* Ca -t- Cl (* — o) + c* (* — a)* H-1- c_, (x — a)"-\ 

Thus the graphs of the first three functions: 

#2(®) = C6 + Ci(*-a), 

*,(*) = q, -I- ci(x- a) -f <!,(* - a)», 

are recognized as (t) a horizontal straight line; (tt) an arbitrary 

straight line (not vertical); (tit) a parabola with vertical axis. It 

is clear that the best use to make of in Case (t) is to make the 

line go through the point P which corresponds to as => a: 

and in Case (it), the best line is the tangent to 

the curve y =/(*) at P, or 

8,(as) =/(a) 4-/'(a)(x-a). 

In Case (t'ii), the best parabola will surely Fio. 108 

go through P and be tangent there, or 

«,(o) - c, -/(a); sj (a) = Ci = /'(a), 

8, (x) = /(a) + /'(a) (x — o) -H <5* (x — a)*. 

Now, of all these parabolas, that one iviU moat nearly approximate to 

the given curve, which has the highest contact with it at P, and this is 

the one whose curvature is the same. Hence we must have: 

«i' (a) = /" (o). or c, = i/" («)• 
Thus 

«»(!») =/(a) +/'(a)(x- a) - a)*. 

The principle is now apparent. We take as our criterion of best 

{^yaroseimation near P the requirement that the 7i-th approximation 
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Wirre lui^ine the highest {>ossible order of eoatsiot with the given eorve 

atfP^sndeo 

**(») *»/(«) + /'(«)(* -a) + - ay + 

+ 
(«-l)l 

In particular, we observe that the ooef&cients which appear in any 

given «„(*) are the same for those respective terms in all later ap¬ 

proximations, 8^(x), n > m. 

If the function f(x) has derivatives of all orders near * = a, we 

can carry this process on indefinitely, and it might seem that the ap¬ 

proximation curve, y — 8^{x), must surely, at least throughout a 

definite interval, approach the given curve, y = f(x), as its limit. 

But it is to be remembered that a given order of contact becomes, 

BO to speak, geometrically operative only near the point in question ; 

t.e. for values of in a certain interval 

(2) a — h<.x<a + h. 

And it is quite conceivable that, as n increases, h should grow smaller 

and smaller and approach the limit 0. That this does not happen 

in the case of the most important functions which arise in practice; 

that, namely, positive constants h do exist such that, throughout the 

whole interval (2), the approximation is uniformly close, — this is 

one of the great phenomena in mathematics, comparable with the 

law of gravitation in physics. It bears not only on the character of 

the functions themselves, but also on the form of the functions of ap¬ 

proximation, the particular s„(x) used; for not every set of func¬ 

tions s^(x), each of which is itself of the character of a polynomial 

and has contact of the (n — l)-3t order at P, has this property. 

It can be shown that a power series represents a continuous func¬ 

tion throughout its interval of convergence. Hence such functions 

as those of § 1 which have a discontinuity cannot be represented by 

a power series throughout the entire interval (a, b). 

EXERCISES 

1. Mot accurately the graphs of 

/(*)a=:log* and 8„(x) 

for a 1, (» = 2, 3, 4, 6), to 10 cm. as the unit iji the interval 

1 ^ ® g 2.t 
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2. Plot ijie gtaphs of sin a; and the approximation ourres through 

the one in »V7!, in the interval —ir^x^ir, taking o = 0. 

3. Contmustion. Series of Orthogonal Functions. A new ap¬ 

proach to the problem of development into series is as follows. Let 

a function, f{x), be given, which is continuous throughout an interval 

(a, 6), or a ^ a! ^ 6; or at least is made up of a finite number of such 

pieces, as explained in § 1 (cf. Fig. 98). Let 

(1) <l>o(x), <^i(a:), — 

be a set of standard functions; for example, if the interval (a, b) is 

— V < a; ^ V, let 

<^(a:) = cos n®, (a:) = sinna:, n = l, 2, <#,o(a;) = |. 

And let it be proposed to develop f(x) into a series of the form: 

(2) f{x) = Co<^o(a:) 4- Ci<i>i(x) + Ci4>t{x) + .... 

In the case just cited, (2) would be a Fourier’s series, 

(3) f{x) = ^ Oo + Uj cos a; -I- 6i sinx 4- Os cos 2a: -I- 62 sin 2® -f .... 

What sort of functions, should we expect to use in the 

general case, and what kind of requirement should we impose on 

the approximation curves, 

(4) 8„ {x) = Co ^0 (®) + Cl (») 4-4- c._i ^.-1 (x), 

if the development is to appear plausible ? 

• Orthogonal Functions. The answer to the first question is sug¬ 

gested by the experience of Mathematical Physics, and in particular 

by the example of Fourier’s series. Let <#>n(a:), n = 0,1, 2, ..., be 

continuous in the interval (a, b), and let 

(5) 

9 J^«(») dx = 0, wi :?£= n. 

no matter how m and n are chosen. Then the functions ^(x), 

^j{x) ..., are said to be orthogonal. Moreover, we will assume that 

they are linearly independent; cf. Chap. XIV, § 11. 

Since no vanishes identically, the integral (6) has a posi¬ 

tive value when m = «. If this value is unity: 

(6) J [<^,(x)3»dx = l, 
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We ^tem of fonotioiu ^.(e) » normaliud. Aa ailjitnirjr 
Bystem oaa be reduced to a normalized one by dividing each, term 
^n(p) ^ square root (taken with either sign) of the lateral (6), 
formed for m a n. 

The system of functions 

(7) cos a;, sinx, co3 2x, 8in2x, ••• 

considered in the interval ( — ir, «■), forms an orthogonal system; 

of. § 1, (4). If, furthermore, each of these functions be divided by 

Vx, the new system, 

.Q. 1 cosx sinx cos2x Bin2x 

2Vir V*’ Vt Vit v*’ 

becomes normalized. 

Tht. Formal Devdopment. Let us assume that the given function 

can be represented by a series of the desired form: 

(9) fix) == Co<^(x) + (x) + — 

throughout the interval (a, h). If, furthermore, on multiplying (9) 

through by ^»(*), the new series can be integrated term-by-term, we 

have, by virtue of the orthogonal property (6): 

Hence 
t 

(11) c»-*—j-, or Ct=J*fix)i>^ix)dm, 

in case the ^.’s are normalized. 

Thus the form of the series is established, in case a development 

in tmms of the ^.’s is possible (and, moreover, the integration 

whereby the s were computed is allowable). It remains to show 

that the series (9), where tiie coefficients are given by (11), con¬ 

verges, and that its value is the same as that of the given function, 

/(»)• 
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4. Approximatioiia acoording to tike Principle of Leut Squares 
Turning now to the second question, namely, what kind of require¬ 

ment should be imposed on the approximation curves (4), we find 

one answer to be that given by Fourier: Determine the coefficients 

so that 8,(x) will actually coincide with /(as) in n points of the 

interval. This requirement it is difficult to administer mathe¬ 

matically. 

A second form of requirement is suggested by the principle of 

Least Squares,* and is as follows; Form the integral 

t 

(12) « =y'[/(*) - Co<#>o(a:)-- Ci<^,(a!)-- c,-i(#.._i(x)]®(to. 
« 

This integral may be considered as the integral of the square of 

the error, extended over the entire interval. It is a polynomial in 

the independent variables Co, Ci, •••, c„_i, and it is never negative. 

Moreovetj it is evident that it is capable of taking on indefinitely' 

large values for any given n. Hence it must have a minimum value. 

A necessary condition for a minimum is that 

h 

— 5= — 2 ^ [/— — ••• — — 0. 

Since the <^,’8 are orthogonal functions, this equation reduces to the 

following: 
i 

(13) c. = ;-, or = J" 

in case the <^;’s are normalized. 

Thus we arrive in a most natural manner at the same determina¬ 

tion of the Cj’s as in the case of the formal development, § 3, but 

without any assumption concerning the possibility of the actual 

development. We note, moreover, that here, as in the case of the 

Fourier development, the c/s which correspond to a given value of 

n remain unchanged for all larger values of n. 

*Toe|der, Ameiger der Akad. dtr WU»eK»eh(iften in Wien, vol. Xm (1876), 
p. 206. The method goes back to Bessel, Attronomische Naehriehten 6 (1628) 
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EXERCISES 
4 

X. It /(s) is a function satisfying the conditions' of § 1 in the in- 
texvai (a, 6), and if are a system of functions, or- 
th<^;onaI and normalized in this interral; if furthermore is 
determined by (13), show that the integral (12) has the value 

h J'[/(*)? das-cJ-£?- — 

S. If Co, Cl, ••• determined as in Question 1, show that the 
series 

+ ••• 

> 

converges, and that its value does not exceed J*[/(*)]* d*. 

(Bessel’s Inequality.) 

5. Zonal Harmonics.* A further example of a system of or¬ 
thogonal functions is afforded by Legendre's Polynomials (or Coeffl- 
eients), or the Zonal Harmonics, P„{x), considered in the interval 
— 3 ^ X ^ 1. These are pol)aiomials of degree n (Chap. XIV, § 19): 

(1) 

Po(») = l, Pi{x)=x, P,{x) = ^x^-:^, P,(») = |»'-fa!,. 

Pnio^)' 
1-3.5- —(2n-l) 3^2 

2(271-1) 

7t(7t - 1)(n - 2)(71 - 3) ^ 1 
2-4-(27i-l)(2n-3) / 

A second formula for P„{x) is due to Rodrigues: 

(2) PM 
1 d-(z:^-l)" 

2'*7»! das' 

These functions have in common with the functions (7), § 3, not 
only the orthogonal property, but also the following properties: 
(t) they never exceed numerically a certain constant (inciden¬ 
tally, 1)} and (ti) P„{x) has n roots in the interval (as over 
against the 2n roots of those functions). 

* For a dear and succinct treatment of the properties of these functions, cf. 
Pierpont, Vumaions of a Complex Variable, Chap. XIV, p. 488. Numerous 
qiplieatlons are given in Byerly’s Fourier's Series. 
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EXERCISES 

1. Show that a* can be expressed linearly in terms of Po(®)> 
Pi(!b),P,(ar): 

af = aoPo(a!) + aiPi(a)) + ... + a,-iP„_i(3!). 

Suggestion. Consider first the eases: n = 0,1, 2, 3. 

2. With the aid of the method of integration by parts and Rodi- 

gues’s formula (2), show that 

x"‘P^{x)dx = 0, m < n. 

Suggestion. Begin with n = 1, 2, and 3. 

3. From the results of Questions 1 and 2, deduce the orth(^onal 

property of the Polynomials of Legendre ; 

1 

f’n,(x)Pn(x)dx=0 m^n. 

4. With the aid of the method of integration by parts and Ro- 

digues’s formula (2), show that 

J^l nWJ 2^(n\y^ ^ ’ d**" 

= L^-iydx. 
6. '^ith the aid of the method of integration by parts, show that 

6. From the results of Questions 4 and 5, show that 

1 

/[i’.wro'- 

7. If/(*) can be developed into a series of zonal harmonics in the 

mterval (— 1,1): 

f(x) = CoPo(a!) + CiPi(a;) + CiPi(x) + 
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and if the aeries, after being mnliaplied by P*(*), can be integrated 

ternv-b^.tarni, show that 

Jmp,{x)dx. 

6. Beaael’s FnnetionB.* The Bessel’s Function, JJx), is a oertain 

solution of the linear differential equation of the second order: 

(1) ^ + + = 
d3^ xdx \ x^r 

In particular, J^(a;) is that solution of the equation 

*0+1+'® = "’ " = “ 

which remains finite at the point x = 0 and takes on the value 1 ‘ 

there. It is given by the series 

(3) + + 

Furthermore, 

Evidently, 

(5) J',{x)^-J,{x). 

It can be shown that these functions have an infinite number of 

positive roots, each of which is simple. Let those of be denoted 

by A„ A*, —. 

The functions 

(6) Vx Jo(^i»)j VxJ’oCAjx), Vx.7'o(A*x), ••• 

when considered in the interval (0,1), form an orthogonal family, or 

(7) «7o(\,») J'o(An»)dx=0, m n. 

For, on making a change of variable, x = Ax', A ^ 0, we find that a 

solution of (2) becomes a solution of the new equation 

• Cf. CShap. XIV, $ 19. The reference to Pierpont In 8 6 applies to these 
functions, too; L c. Chap. XV, p. 588. — For applications, of. Byerly, Fourier’s 
Asriea 
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Hence J^(Xa9) satisfies the equation 

Let «= Jf,{ca:) and v = Ja(fix). Then 

xu"+ u'+ a?xu = 0, xv" + v' + fi^xvss.0. 

Multiply the first of these equations by — v, the second by u, and 

add: 
x(uv" — vu") + uv' — uu' + (j3^ — a^) aJMU = 0 

or 

—[x{uv' — Vtt')] + (/3* — a') xuv — 0. 

Hence, integrating and observing that u' = a Ji(aa;), we have: 

1 

(9) 08* - «’) JxJoiax) Joifix) = aJ'o{a) Jo(fi) - J^{a). 

If we set « = A„, /3= A,, the right-hand side of (9) vanishes, and 

thus the orthogonal property (7) is proved. 

It is furthermore possible to evaluate the integral 

1 

(10) /' CJ,(X.x)]*d® 

by means of (9). Differentiate (9) partially with respect to )3, and 

then set = a: 

2a^»[/o(ax)]*dx = «[>7’i(a)]* — •7o(«) */o(«) ~ «*^'(«) 

If, now, a = A„, this equation gives: 

1 

(11) J'x dx = I [deCAn)]* = i 

The Function J^{x). This function is a solution of equation (1) 

which, for any positive m (not necessarily an integer) is continuous 

in the interval 0 g x ^ 1. It can be written in the form: 

(12) /„(*) = 
where ^(») can be expressed as a power series in x*, and ^(0) ^ 0. 
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fttncticHi JJ£) has an infinite number of positiTe roots, eaub 
of wbi^ is simple. 

It can be shown that 

(13) • 

EXERCISES 

1. Prove that, if the function f(x) can be developed into a senes 
of the form 

y(a/) = Ca</a(\|3!) "b 

where Ac> i^be positive roots of Jc(x); and if, on multi¬ 
plying this equation by xj^ik^x), the new series can be integrated 
term-by-term, then 

] 

2 ^ xf(x)J(,{k^x)dx 

3. Show that J„(ax) satisfies the differential equation: 

8. Prove the relation 
9 

■-«*) y* x)J„(/3x)dx 

: x\aJl,{ax)J„{px) ~ pJl.{Px)J^{ax)l. 

4. If >0, Aj, Aj, ••• are the positive i-oots of J„{x), show that 

Vi/^CAi*), Vx./„(As®), — 

are a system of orthogonal functions. 

5. Prove that 
1 

8. If the function f(x) can be developed into a series of the form; 

/(») = c# J«(Ao*) +• c, J*(A,x) + Cj 
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m the interval (0,1), and if, on multiplying this equation by 
xJ^Qt^x), the new series can be integrated term-by-term, show that 

'■J 

2 I xf(x)J„(\,x)dx 



CHAPTER XVII 

TH£ CALCULUS OF VARIATIONS AND HAMILTOFS PRINCIPLB 

1. MazUSlUa or Hfinimnm of Let F{x,y,p) be 

a given function of the three independent variables x, y,p. Let two 

fixed points, A and B, be joined by a curve (7: 

(1) y=fix). 

where /(®) and its derivative, ^z=zy* =sf' (x), are continuous in the 
dx 

interval a ^b. Form the integral 

> 

The value of this integral will dex)end on the particular curve C. 

The problem is to find that curve C, i.e. that function f{x), for which 

the integral takes on its least (or its greatest) value.* 

It is assumed that F(x,y,p) is continuous, together with its 

partial derivatives of the first and second order, when (as, y) lies in 

a given region 3, andp has any value whatever. Moreover, the 

curve C lies in S. 

Minimum Surface of Mevolution. For example, consider the area, 

A, of the surface of revolution generated by the rotation of the 

curve (1) about the axis of x. Since 

(3) 

*For a comprehenBlve treatment of the Calculus of Variations, admirably 
written as regards both accuracy and clearness, the student is referred to two 
books .by Bolza; Lectures on Vie Calcultu of Variations, Chicago, 1904 ; Vor- 
lemtngen fiber Variationsrechnung, Leiprig, 1008-09. Cf. also Bliss, The 
CaUmlus of Variation§, Chicago, 102&. The latter book, the first of the Caras 
Monographs, is intended for the layman and seeks to provide an approach to the 
sabjfiot fdr those whose mathematical tndning has not gone beyond the radir 
ments of the calcnlua 

406 
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it is here a question of finding that ourve for which this integral will 

be least. The function F{x, y,p) is here yVl +j)’. 

Several Dependent Variablea. A more general problem consists in 

that of joining two fijced points in space by a curve such as will 

make the integral 
t 

(4) J=J'F(x,y,t,y',z>)dx 

a minimum (or a maximum). 

2. Euler’s Equation. Suppose the problem solved, and let 
y = f(x) be that function which gives to the integral (2), § 1, its 

least value — we will restrict ourselves to the case of a minimum, 

for that of a maximum can be reduced to this case by changing the 

sign of F. 

Let y= (ft (x) be any function which, together with its first de¬ 

rivative, 1)' = <lt'(x), is continuous in the above interval, a ^ z g 6, 

and which vanishes at the extremities of the interval: 

Moreover, y shall remain numerically less than a positive constanb 

c, which we choose in advance as small as we please; < *• 

Form the function 

y + v- 

Then the vaJue of the integral 

JF(x, F, T' )dx 

will be at least as great as 

y') 

and the same will be true of each of the integrals 

(1) y + ay, i/ + ay)dx, 

where a has any value from — 1 to -h 1. It is assumed that ij is so 

chosen that the curve corresponding to y.4- uy lies in S. 
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Tbia lattef iategial is a fonotion of ct, eoatinaoos for the laage of 

valaes bf a consi4ered (ef. Chap. XIX, § 1), and it has its least valtle 

wbea «= 0. Since it has a continuous derivative (1. c.) we must 

dJ\ 

da 
= 0. 

Now, by Leibniz’s Rule (1. c.), 

where the partial derivatives are both formed for the arguments 

(as, y + ai), y' + aij')- setting a = 0, we find, then: 

t 

(3) J'(r,F, + ^'F,)dx=.0, 

a 

^here F^ and are now formed for the arguments (x, y, y'). 

This equation must hold for all functions y satisfying the above 

conditions. But it is not easy to draw inferences from the equation 

in this form. For that reason we assume that the function y has a 

continuous second derivative * and proceed to transform the integral 

of the second term by the method of integration by parts: 

t t 

(4) = dx. 

m a 

The first term on the right disappears, since y vanishes by hypothesis 

at both extremities of the interval of integration. Hence we have, 

as the equivalent of (3) ; 

* This requirement involves on its face a restiictdon of the problem, since it 
is conceivable that the original problem may have a solution, y, whose second 
derivative does not exist. Hilbert has, indeed, shown that this cannot be the 
case. But we are not concerned here with tne difficult question of proving 
mathematically that our problem (after still further restrictions) has one and 
only one solution, and that this solution satisfies the further demand of possess¬ 
ing a second derivative. On the contrary, we take for granted, in a given case, 
as more m less plausible from the physical evidence, that the problem will 
admit a unique solution, continuous together with its derivatives of the first two 
orders, for we know from experience that problems with a physical pedigree do 
usually admit the kind of solution expected — and we then turn our eflorts to 
fimltng this solution. Incidentally, we get some interesting surprises as to what 
was to be expected from the physicai evidence. 
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(6) 

Now 17 is arbitrary, subject to the conditions stated above. This 

fact enables us to infer that, at every point of the interval (a, 6), the 
following equation is satisfied: 

(^) F^-^ = 0. 
* dx 

Graph of 1? 

For, suppose that, at a point a: = c of the interval, the left-hand 

side were, say, positive. Being a continuous function, it must remain 

positive throughout a certain neighborhood 

of c. Let ij be so chosen as also to be positive 

in this neighborhood, but zero everywhere 

else in the interval. Then the integral could 

not be zero, and so we have a contradiction. Hence the theorem. 

Equation {A) is known as Euler’s Equation. It forms a necessary 

condition for a minimum (or a maximum). On carrying out the 

differentiation indicated, it takes on the form 

Fio. 103 

(AO ^ + F ^ + F —F=0, 
*’’dx * 

a differential equation of the second order for y. The integral of 

such a differential equation will depend on two arbitrary constants, 

and these will be determined by the requirement that the curve pass 

through the fixed points, A and B. 

Extremals. A curve corresponding to any solution of Euler’s 

Equation is called an extremal. 

The Integrand, Independent of x. It may happen that the inte¬ 

grand, F{x,y,y'), does not contain x explicitly. In that case a 

first integral of Euler’s Equation can be written down at once. For, 

since here 

(6) = 

we have: 
(7) F—y'F^= const. 

Several Dependent Variables. 

functions, as 

(8) / F{x, 

If the integral depends on several 

y, *1 y'> *0 
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tim Euler’s Equation must hold for each letter sepaiatelj: 

w ' 

On the other hand, the integrand may contain derivatiyes of highe 

order than the first. Thus if 
> 

(10) J = fn., y. y', y") d*, 

and if ve consider such functions if as are continuous, together mt 

their deriyatives of the first two orders, and vanish together wit 

their first derivatiyes at the end points of the interval, then Euler’ 

Equation becomes: 

(11) 

EXERCISES 

1. Let it be required to find the curve which connects two give 

points in the upper half-plane and makes the integral 

Vl + y'^ dx 
y 

a minimuTti. Show that the extremals are the semicircles whos 

centres lie on the axis of x, and determine the one which go€ 

through the given points. 

2. A ray of light traverses a certain medium, in which its velo< 

ity, ^(x, y), is variable, but at any given point is the same for a 

directions. Show that the time required from one fixed point to 

second is given by the integral: 

t 

> 

Vi + y'* 

y) 
dx, 

and hence the path must correspond to a solution of the diSerenth 

equation: 

i>y" 

i + y** 
- ^.y' + 0. 

S. Integrate the differential equation of the preceding questio 

when 
y) = «<!• 
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4. The differential of arc of a oorre on the surface 

» “ /(«»“»), y “ 4 («) »), 2 = ^ (w. v) 
has been shown to be given by the equation (cf. Chap. VI, $ 4, 

21) ^ ^ ^ 2Fdudv + Odifl. 

Show that the geodesics (t.e. the shortest lines on the surface) are 

determined by the differential equation 

d f F+Gv' E, + 2Fy + Gyt 

dw W£? + 2Fv' + Gu'V 2 VF+SJVT^ * 

3. Minimnin Surface of Berolution. Returning to the problem 

proposed at the end of § 1, we see that Euler’s Equation here be¬ 

comes 
d (1) Vl-t-p’ M. 
d* Vl+p* 

= 0. 

dL d 
Observing that — =p ^ and performing the differentiations indi- 

dxdy 

cated, we have, on reducing the result. 

Hence 
dy 

dy_ pdp 

dy 

(2) 

y H-p*’ 

log y = i log (1 +p*) + C, 

Vl+p*=^, 
0 

where we have replaced the constant of integration, C, by the 

equally arbitrary constant, b, setting C = log b. 

From (2) it follows that 

Hence 
^ dx 

dx=‘± 
bdy 

Vy»-6* 

a,-a=.±61ogy + ^y^. 
0 

On solving this equation for we find; 
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the equation of a eatenary, referred to the axis of a; as dJ^trix. 

The scale to which the curve is drawn is arbitrary, as shown by the 

constant b; and the location of the axis of y is also arbitrary, as 

shown by the constant a. But the directrix is hxed. 

To complete the solution of our problem, we must choose a and b 

so that the catenary will go through the two fixed points. Can 

this always be done? There is evidence from mechanics on this 

point; cf. Chap. XIV, § 7. Let a heavy flexible string be hung 

over two smooth pegs at the fixed points, and let its ends reach 

down to the directrix, D, of the particular catenary in which it 

hangs. Then it can be released at the fixed points and will not slip. 

If D, perchance, coincides with the axis of x, our solution is com¬ 

plete ; the part of the string between the pegs gives us the desired 

catenary. 

If D, on the other hand, lies above the axis of x, then a steady 

lengthening of the string will bring it down, and when it reaches the 

axis of X, our problem is solved. 

If, however, D lies below the axis of x, it may be possible to raise 

D by shortening the string; but there is a limit, above which D 

cannot go, cf. Chap. XIV, § 7, Ex. 1, and if this limit is below the 

axis of *, our problem cannot be solved. 

What does this mean for the minimum problem with which we 

started ? Will there not always be a surface of revolution of least 

area? Xo! If the fixed points are 

very near the axis of revolution, in com¬ 

parison with the distance between them, 

a surface of revolution generated by a 

curve like the one indicated will have a 

relatively small area, and these various 

areas will have a certain lower limit, which can be shown to be the 

sum of the areas of the two discs, whose radii are y„ and yi. But 

evidently no surface of revolution can be found which will have 

quite so small an area. 

Thus it is seen that a problem in the Calculus of Variations, whidi 

it is easy to formulate, may not have a solution. 

4, Hie Brsoh3rAoo]irone. Let it be required to find the curve of 

quickest descent, i,e. the form for a wire on which a smooth bead is 

to slide, in order that the bead, leaving O from rest, may arrive at A 

in the shortest possible time. 

Fio. 104 
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CboOBiog the axes as indicated, we have, fox an arbitrary point of 

the path (cf. Introduction to the Calculus, p. 375): 

e* = 2gy, 

V2<?J 

da, 
v = —’ 

dt 

AHa,b) 

Via. 106 

and so it is a question of making the integral 

a innmiTnum. 

Suler’s Equation here becomes 

(2) 
VI + ^ d p 

dx Vy VI+p* 

This reduces to the equation: 

l-fpi! dy 

Integrating, we have: 

y 

Hence fic-j 

dx ^ y ’ 

(3) xssz r — = — y/'Jicy — + c cos“i -—^ + c. 
J yl‘2cy — y^ ® 

Since the curve starts at the origin, 0 = 0. 
This is the equation of 

a cycloid, 

(4) * = 00 —csinS, 

y = C — C cos 0, 

10® To determine c, draw 

the particular cycloid, for which c = 1, and let the line OA (pro¬ 

duced, if necessary) cut it in A'. Then, since all cycloids are similar, 

c =s OAjOA'. 
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5. Btfaittoa ot Hm Yui^as. The ezbitcary ftuuitioQ. i} of f 2 

Is aa lUmtration of what is kao wn as a variaHmi, and since it is added 

to y, it is denoted by ^ and read: “ Tariation of y,” 

(1) , = 8y. 

Its derivatiTes are denoted as the mriaiiona of the derivativee of y. 

(2) V 
Thus by definition 

(3) 

¥, 

dx dx 

eta 

Fan’otwm of a Function, y,y',y", ••• z, s', •••)• 1^®* be a 
function of x, y, y', y", •••,*, s', •••, continuous together with its first 

partial derivatives, and let y,z, ••• be functions of the independent 

variable x, continuous together with such of their derivatives as 

enter in F. Let y, z, ••• receive variations Sy, Ss, •••. The variation 

of is defined as follows: 

(4) 8J’= F^hy + F,,hy’ + F^,W' + ••• + F.Bz + F^8z' + .... 

Here, 8y, 8z, ... are chosen arbitrarily, subject to such conditions as 

those we met in § 2. 

The definition applies equally well in case there are several inde¬ 

pendent variables. 

The independent variable or variables are not varied. Thus 

(5) hF(x, y, u 
' dx’ dy 

'j = F,Su + F,Sp + F^ Sq, 

P 
’^dx’ 

? = 

where =x 8u is an arbitrary function, continuous together with its 

partial derivatives 

(6) C, 

throughout the region 8 in which u is considered, and required to 

be numerically small. 

C 
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then ij is d^ned as follows: 

It may happen, however, that &y is restricted so that a second 

integral will have a constant value: 

(9) y + ^!/,y' + Sy') 

This can be accomplished by making Sy depend on a parameter, as 

is done below in § 8. 

For other forms of definition of variations, cf. Bolza, Variations- 

rechnung, p. 45, § 8. 

6. Euler’s Equation for Knltiple Integrals. Consider the in¬ 

tegral * 

Let u be the function which makes J a minimum. Give to u a 

variation, 8w = {(*, y), where ^ vanishes on the boundary, C, oi 8 : 

(2) l\o = 0. 

Then the function of a, 

(3) •f(a) =JJ9 + “i») 

has a minimum when « = 0, and J' (0) = 0. Now, by Leibniz’s Rule, 

* As to continuity it is assumed : (i) that F (x, y, u, p, q) is continuous, to- 
gedier with its partial derivatives of the first two orders, when (x, y, u) lies in 
a given region, F, of space, and p, g have any values whatever. Moreover, the 
surface a =/(*, y), for which the integral is formed, shall lie in F, and /(x, y) 
riiall be continuous, together with its derivatives of the first two orders, in 8. 
The same shall bold true for the varied surfaces, u -|- a^ 
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•wbars^P^, F,, F, axe formed for the axgrnmente (», w 4- «t> l> 4-«{,, 

? + «C,X On Betting « = 0, we have, therefore, 

(6) 4-i.n4-i.J’.)dS 0, 

where these partial derivatives are formed for the arguments 

(x,y, u,p,q). 

This equation corresponds to equation (3) of § 2, and, like that 

one, can be transformed by integration by parts. Since * 

|(TO-t.n + f§. 
we have: 

But f vanishes by hypothesis on the boundary, and so the line inte¬ 

gral drops out. 

On transforming the last integral in (5) by a similar method we 

find, as the equivalent of (5) : 

Now f is arbitrary, within the limits imposed. We can, there¬ 

fore, infer that equation (6) is true in all cases only when the sec¬ 

ond factor in the integrand vanishes at every point of 8, or 

This is Siller’s Equation. In it, and are formed for the 

arguments x, y, u, dufdx, dufdy, where u denotes the function that 

makes J a minimum. Thus F^ and F^ become functions of the two 

independent variables, x and y, and the differentiations indicated 

by idle 3’s are performed under this hypothesis. 

Cfeneralized Coordinates. It should be observed that, although 

equation (5) holds for any system of coordinates whatever, equation 

(7), d^ending as it does on integration by parts, is restricted to the 

* Tbis is the transformation known as Oreen’s Theorem; of. Chap. 33, 

I®. 
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case of OartesUm coordinatea. If curriliaear coordinates {X, /*) bo 
introduced, then (Chap. XII, § 4) 

(8) 

irhere 

II., u, p, tr) Dd^ 

vfn. « „ 

^(X, p) 

du du 

du’ 

and the integral is extended over that region, 2, of the Cartesian 

(X, jj,)-plane, into which S is transformed by the equations which 

correspond to the system of curvilinear coordinates : 

(9) A.=/(a:, y), ja = <#.(*, y). 

Thus Euler’s Equation takes on the form : 

(10) D*.-|.(U<b,)-i.(D$,) = 0. 

EXERCISES 

1. If u is a function which renders the integral 

IdS 

a minimum, show that 

d^u 

0x* ^y* 

2. If u is a function which renders the integral 

a 

a minimum, r and 6 being polar coordinates, show that 

.dht . du dhi f. 
dr de» 

3. Show that Euler’s Equation for the volume integral 
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▼here _ du 8u 
Q » r • 

“ 0* 0y 0* ” ■ 

Explain carefully the meaning of each partial derivatiye. 

4. If u is a function which renders the integral 

a minimum, show that 

0*M 0*u 0*M _ Q 
0x* 0y* 02® 

5. If u is a function which renders the integral 

a minimum, where (r, <!>, ff) are spherical polar coordinates, show 

that 

i. fr* sin ^ ^ V — ("sia - V “ — = 0. 
0rV ^0r;^0^V ^0^ 8in^0O® 

6. Minimum Surface. A surface, z=f{x,y), is spanned into a 

simple closed twisted curve. Show that, if its area 

is to be a minimum, then 

7. If the integrand of the doable integral contains the second 

derivatives. 

so that we have: 

JP’C®, y, a,P, ®i »'i«, 
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Euler’s Equation becomes 

* 8* 0y 2** dx8y 2y> 

8. Extend Ex. 7 to volume integrals. 

7. Laplace’s Equation in Curvilinear Coordinates. SirieUet’s 
Prineiple. A classical problem of mathematical physics is the fol¬ 

lowing, known as the (first) boundary value problem for Laplace’s 

equation: To find a function, tt, which throughout a given region V 

of space satisfies Laplace’s equation, 

dhi I 1 _ A 

da?^_dyt'^ dz^~ ’ 

and which, moreover, takes on given boundary values along the 

boundary of V. 

The mathematicians of the middle of the nineteenth century 

sought to solve the problem of showing that such a function 

always exists by formulating a problem in the calculus of vari¬ 

ations, which is identical with the original problem, and the answer 

to which seemed to them self-evident. They considered, namely, 

the integral 

extended throughout the given region, the function u being required 

to be continuous, together with its derivatives of the first two orders, 

and to take on the given boundary values. Euler’s Equation for 

this problem is (§ 6, Ex. 4) precisely Laplace’s equation. Now, the 

integrand of the integral (1) is never negative, and so the value of 

the integral cannot be negative. It is evident, therefore, that the 

value of the integral, corresponding to various choices of «, has a 

lower limit which is not negative; t’.e. that there exists a constant 

.A ^ 0 such that, if e be as small a positive constant as you please, 

there will be some function u for which the value of the integral 

will be less than ^ -f- e. But how do we know that there is a func¬ 

tion u for which the value of the integral reaches this lower limit. A? 

We have seen, in the case of the minimum surface of revolution, 

that a perfectly well appearing problem of the calculus of variations 

may have no solution. A lower limit may exist when a minimum 

does not. What is the lower limit of the positive numbers ? What 

is the smallest positive number ? 
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Weieratrass pointed out the fallacy in the assumption th^t %eie 

must be a function u fot -which the integral reaches its lower limit, 

and thus this method of proving the existence theorem for Laplaoe’s 

eqmtioU'—the method known as Diricktefs Principle — fell to the 

ground. 

If, on the other hand, we have a solution, u, of Laplace’s equation, 

it can be shown that this function makes the integral (1) a mini- 

mupi, and hence the problem of the calculus of variations does have 

a solution. For, let u 4- A be any other function of the class 

admitted to competition, and form the integral (1) for U. Thus we 

find: 

f f J J J j 

The value of the second integral is seen by Green’s Theorem to be 

0; cf. Chap. XI, § 9, Ex. 2, in which the u and v are to be replaced 

by the present h and u respectively, and observe that h vanishes on 

the boundary. 

The value of the last integral is positive, unless h = const. But 

since A s: 0 on the boundary, the constant would be zero, and thus 

17 would = «. 

Laplace’s Equation. This result is important in practice, since 

it enables us to simplify the computation of Laplaoe’s equation in 

curvilinear coordinates. Let 

(2) X=/(a!, y, 2), ^ = ^{x,y,z), v = ^(x,y,z) 

be the equations of three families of surfaces (X, y., v being parame¬ 

ters), and let each surface of any one family cut each surface of any 

other family orthogonally. The relations existing between the partial 

derivatives of these functions and those of the inverse functions ate 

developed in Chap. YI, $ 6, and it is there shown in particular that 
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Thus the integral (1), when transformed to the cnrrilinear coordi¬ 

nates A, ih V, becomes (sare as to sign) 

VHiHiHfdr, 

where t denotes the region of the (A, v)-8pace which corresponds 

to the given region V of the (*, y, 2)H3pace. Since a function, u, 

which satisfies Laplace’s equation, makes the integral (1) a mini¬ 

mum, such a function must also make the integral (5) a minimum. 

Euler’s Equation now takes on the form: 

and this is Laplace’s equation in orthogonal curvilinear coordinates.* 

Example. Let the curvilinear coordinates be spherical polar coor¬ 

dinates : 

x = r sin cos d, y = f sin ^ sin 9, z = r cos i#>. 

Then Hi = l, M2=‘r% JST, = r* sin«</,; 

\dx) \dy) \dzj \dr) i^\d<j>) r*(^8^/ ’ 

J=zr'‘ sin <l>. 

Laplace’s equation becomes: 

(9) + + 
1 d^u 

sin <i> cG^ 

* Por a treatment purely by partial difierentiation, in which, moreover, the 

Identity 

(7) 
a»u , S^u . 3»u 

1 

is established, cf. Goursal^Hedrick, Mathematical AnalysU, vol. I, Chap. H, 

§ 48. The more general case of the Exercise below is treated on the basis of 

the vanishing of the variation, and not of the minimum property, by Courant 

and Hilbert, Methoden der mathematiachen Phyaik, vol. I, p. 104. Why should 

the vanishing of the variation be independent of the choice of the coordinates ? 
The pro<rf given in the text is in one respect incomplete, since the unigwenssf 

at the equation (6) has not been established. 
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EXERCISE 
r 

Let the reqturement be remoted from the ttansfoimation (2) 

it be orthogonal. Then 

where .tlisAiX, At as Aift, At = Sir, 

B, =:A(^, v), £2 = A(r,\), Bt = A(X,fi), 

the notation A (X, /x) standing for the first polar of A^X with respect to 

\dx dy dz) 
or 

A(x,/.) = |^fe+|x|.^ax|t. 

ex ox oy oy dz dz 
Moreover, 

Ai Bf Bt 

jBj At Bi 
Bf Bi At 

Show that Laplace’s equation is the following: 

j* = d(X,/i,v) _ 1 
'd{x,y,z) J' ^ 5(X,/*, v) 

+ 

+ 

d Vf .du 

i[( 

£[( 

Cfi. Cv 

„ . dn .-odu 

p 0M , p 0?t . dll' 

y] 

)^] 

0. 

8. Iioperimetric Froblemi. Consider the problem of joining two 

points by a curve of given length, so chosen that the area enclosed 

between the curve and its chord will be a maximum. The area is 

given by the integral 

(1) 

ol 

(2) 

'=/> 
ydx\ 

Era. m 
the length of the curve is 

’J'VT+y^dx. 
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And now not all functions y whicli correspond to curves joining the 

two fixed points may be admitted to competition, but only such as 
make the second integral equal to 1. 

The foregoing example is typical for the general case. Let 

Vi P) ® (®i Pi P) b® two functions which, together with their 
derivatives of the first two orders, are continuous, where (x, y) is 

any point of a given region 8, and p has any value whatever. 
Form the integrals : 

(^) Vi y') dx. Vi y')dx. 

the curve y=sf(x) lying in S. To find that function, y, of x which 

will make the first integral a minimum (or a maximum), while giv¬ 

ing to the second integral a preassigned fixed value, K. 

We proceed to deduce a necessary condition in the form of Euler’s 

Equation for the present case. Let y and ^ be two functions which 

satisfy the conditions imposed on ij in § 2. Let us try to determine 

/3 as a function of a such that 

t 

(3) 0(«, yS) = r<t> (x, y + ari + y' + ay' + p!i')dx — K 

will always = 0. Here, O (ot, y3) is a continuous function of the two 

independent variables, a and /3; moreover, it has a continuous 

partial derivative with respect to yS (Chap. XIX, § 1), 

(4) 
a 

where and are formed for the arguments 

(x, y + ar, + /3C, y' 4- ay' + 80- 

If this derivative, n^(a, /3), does not vanish at the origin, then the 

theorem on implicit functions, Chap. V, § 12, tells us that there 

exists a function, ^(a), continuous in the neighborhood of the origin 

and vanishing there, such that the equation 

(6) O(«,/3) = 0 

will be satisfied if y3 = «^ (a). 
Now, (0, 0) is given by (4), where and are to be formed 

for the arguments (x, y, y'). The integral of the second term can be 
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teaasformed as ia § 2, aad hence we have: # 
4 

(6) Q,(0,0)=^Jt(*,-^'^dx. 

m 

It is obyionsly possible to choose ( so that this last integral will not 

vanish unless the second factor in the integrand, — d9jdx, van¬ 

ishes identically. As a matter of fact, this case does not arise in 

practice, and so we choose once for all, so that 0^(0, 0) ^ 0. 

We can now choose jj arbitrarily and then, for any a numerically 

not too large, determine ^ so that Q(ce, ^8) = 0; i.e. the second inte¬ 

gral in (.^) has the required value. 

The first integral in (A), formed for the function T' = y -f- «ij + /Sf, 

is a function of a which has a minimum when a = 0. Hence 

(dj/da),^ = 0. Now, 

h 

(7) 
4 

i > 

=f (y,F, -h y'F,) d* -f (IF, + CF,) dx, 

4 4 

where F, and F, are formed for the arguments (*, y + ati-^ /Sf, 

y' arj'-I- /3{'). Let « = 0; then yS = 0, and since 

(8) ^' = - 

we have: 
h 

(9) J3'l^ = -^- 

4 

Substitute this value of iu (7), written for a = 0. If we set 

» 

y*[CF, + ('F,)dx 

A-*-j- (10) t 
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new equation becomes: 

or 

(11) 

‘ » 

^ (>?F, + VF'p) da: + kj*[r]<P^ +dai= 0, 
o • 

^ I + x*^ I dx = 0. 

Now this is precisely equation (3) of § 2, written for the function 
J* + X't instead of F. It can be transformed as before by integra¬ 
tion by parts, and thus we find: 

(12) (F. + X$,)-|.(F; + X4.p) = 0. 

This is Euler’s Equation in the parametric case. It expresses a 
necessary condition for a minimum (or maximum) in terms of an 
unknown constant, X. The extremals depend on X, and on the two 
further constants of integration. 

Example. Recurring to the example with which the paragraph 
opened, we haye: 

jF 4- X* = y + XVl +p*. 

Thus Euler’s Equation becomes: 

1-A——=0. 
d» Vl+p* 

Hence 

Thus 

VI +p’ 
* — c. 

(g — c)» . 
Xi _ (a:-cy’ 

or 

(x — c) dx 

VX»- (sc-c)* 
= T VX* - (g - c)» + d, 

{x — cy + (y — d)’ = A®. 

The extremal is, therefore, the arc of a circle joining the two 
points iind haying the prescribed length. The two constants of 
integration, c and d, and the constant X of Euler’s Equation are just 
Sufficient to permit the fulfilment of the aboye conditions. 



m CALCfULUS 

^ EXERCISES 

1. Two fixed points are joined by a uniform heavy wire of given 

length, which may be bent into any shape. Assuming that there is 

a form of the wire for which the centre of gravity is lowest, show 

that this form is the catenary in the vertical plane through the given 

points.* The extremals are the curves 

2. Extend the method of the text to double integrals, and show 

that, if 

>2/, «.J5. 9)^5, K= //• (», y, u,p, q)dS, 

S 

where K is to remain constant, then a necessary condition that J be 

a maximum or a minimum is given in the form of Euler’s Equation: 

F. + X4>u - + a*, - a 2?, + X4., = 0. 

8. Let .S' be a region of the (a;, y)-plane, bounded by a simple 

closed crrve, C*; and let a cylinder Z be erected on C with its ele¬ 

ments parallel to the axis of z. Let a simple closed (twisted) curve 

(S be drawn on Z above the (*, y)-plane. To find the surface of least 

area which, together with S and the part of Z between C and C, wOl 

enclose a given volume. 

Ans. If z=f{x, y) is the equation of the surface, Euler's Equation 

becomes: 
(1 -f q^) r — 2pq8 + (1 ^ 

(1 -f p* 4- 9*)* 

fi®*’ * dxdy’ dy^ 

The geometric meaning of the result is that the surface is one of 

constant mean curvature. The surface can be realized physically 

by means of a soap bubble film spanned into (£, sufficient air being 

* The result is altogether reasonable. For, if the wire be thought of as a wet 
string, frozen in a particular shape, and then allowed to thaw, the ttring will 
then change its shape (unless it was a catenary to begin with) and Uds means 
IB^edsely to our mechanical Intuition that the centre of gravity has faUen. So 
no shape but the catenary can yield a minimum. 
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forced into the (dosed region above mentioned (or withdrawn from 

it) to yield the given volume. Cf. Bolza, Variationarechnung, p. 6^. 

9. Variable End Points, ^et it be required to find the minimum 

surface of revolution when the generating curve is to have one end 

point, A, fixed and the other, B, on a fixed 

circle. It is clear that the curve must be a 

catenary; but it is not clear at what point, 

B, it meets the given circle. 

This example is typical for the general 

case of the integral 

I 

(1) S 
where all the curves y =f(x!) admitted to competition start from 

one and the same fixed point, A, but end at any point of a given 

curve 

r: y = «^(a:), 
where <t>{x) is continuous, together with its first derivative. 

First of all, it is clear that a necessary condition for the function 

y which makes the integral a minimum (or a maximum) is that it 

be an extremal, i.e. a solution of Euler’s Equation. For, an admis¬ 

sible set of varied curves is that for which both end points are fixed, 

and this is the case of § 2. 

. Next, let a pencil of varied curves C be chosen as follows. Sup¬ 

pose the extremal , 

C: y =/(*). 

to be the solution of the problem, and sup¬ 

pose C can be extended slightly beyond Bfj. 

Thus/(a;) will be continuous, together with 

its first derivative, throughout a somewhat 

larger interval, a^x^h', where b' > and will still satisfy Euler’s 

Equation. 
Let If = )7(a:) be chosen continuous, together with its first derivative, 

in the above interval, and let 

(2) 17(a) = 0, >7(60)=^®- 

Then C shall be defined by the equation : 

0-. y^y + ici}, 

Txa. 109 
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nrheite y a /(a!) and where % ia so chosen that U goes tiitongh S, Gt 

(3) Ab)+k^{b)^<^(V). 

Let & as do + e. Then Jc as k(€) is given by the equation: 

*(«)=■ 
u(*o+«) 

Since ^(dtt)=®/(M> it follows that A:(0)=aO and'' 

(5) ^(0) = ~ , 
V Uh 

where a> denotes the angle from the axis of x to the tangent to r. 

Consider the integral J formed for the varied curve y. It is a 

function of c: i 

J(t)»J'F{x,y+ kri, ^ + V) 
a 

and it has a minimum (or maximum) when < = 0. Hence 

(d//d£).^ = 0. 
Now 

J + *='(0) v'^} ^ + ^1^' 

The integral can be transformed by integration by parts, as in § 2; 

Thus 

(f)-" - f^) '^+{‘'(O) 
o 

This latter integral vanishes, since y is an extremal. On substitut¬ 

ing for ft'(0) its value from (6), we have: 

(tan « — y') J?",,-b 2?* =« 0, 
or 

(6) Fy, sin o> + (J’—^Fy,) cos ca = 0, 

where the functions F, Fy, are formed for the point ® =s 6j, y"af[b^, 

F ssf{b^. This is the condition we set out to obtain. 

Similarly, the right-hand end point may be fixed and the left-hand 

(me variable. In that case, a condition of the same form as (6) holds 
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fox the left^rhaad ead point. Or, finally, both end points may be var 

liable, and we then hare the two equations (6) holding independently. 

7%e Catenary. Returning now to the example with which the 
paragraph began, we have 

Thus (6) gives here: 
y. y')” yVi + 

I^U (0 ss — 
1 

y" 

or the catenary meets the circle at right angles. 

• J%e laoperimetric Case, 

I 

J= jF{x,y,y')dx, 

h 

Here we introduce the varied curve 

y=^y + k^ + l( 

and determine k and I from the equations 

K y + kri +y' + kji' + li') dx, 

<^(6o + <) =/(^o + *) + *^17(60 + ‘) + ^ {(^>0 + *)• 

These equations can be solved for k and I, provided the Jacobian 

dj^ ^ 

dk dl =5fc 0. 

17 C 

The fimctions y 

fulfilled unless 
and { can be chosen so that this condition will be 

vanishes for all choices of 17. This difficulty does not occur in the 
cases which arise in practice. 

Instead next of setting = 0, it will be more convenient 

to consider the integral 

J |f(x, y, y0+ y> yo} dx, 



480 cALora-ps 

vMqh is msselj J’+wya&t. Oa vetjaiTuig its deiivatiTe iri4& 
laspeict lio ( Taoish for e = 0^ ase are led first to the oondition 

*p 

+ (*V+ro-P,'++^fTa*|.u. » 0. 

From this point on the analjsis is similar to that of the earlier 
case, and we find as the analogue of (6) the equation 

(7) F^. + X*,) sin <11 +1F+ XO — y'F^>+ cos <» = 0. 

EXERCISES 

1. A uniform flexible heavy string has its ends fastened to 
weightless rings which slide on smooth fixed wires in a vertical 
plane. Show that, when the string is in equilibrium, it meets the 
wires at right angles. 

2. A variable curve C of given length connects two fixed curves, 
Cl and Cj, which lie above the axis of x. Show that, when the area 
bounded by C, the two ordinates at its extremities, and the axis of * 
is least, C does not in general meet Ci or at right angles. 

8. If, in the preceding question, the area bounded by C, Cj and 
Ct (where now Ci and are supposed to meet under C) is to be 
made a minimum, then O will meet Ci and Ct at right angles. 

10. Paramstrio Form and the so-oalled “Variation of the Inde* 
pmdent Variable.” In the integral 

(1) j~f 
* 

let the curve y = f(x) be represented parametrically: 

(2) x=4>{t), y = ^(r), To g T g tj, 

where tft and ^ are continuous, together with their first derivatives, 
and the latter do not vanish simultaneously. Let 

(3) dr 

II 

dx 
llhen 

5 

(4) 1 y'r)dr, 
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when 

Euler's Equation here takes on the form: 

(6) 
Since 

= 0. 

dr 

it is seen that the second of these equations is equivalent to Euler’s 
Equation in the earlier form, 

(6) 

provided <^'(t)^0. 

Let X and y receive the variations t and i; respectively,* where, 

however, we no longer demand that y vanish at the extremities 

of the interval, (to, TiV Then 

In terms of F the integral has the value: 

n 
(8) hJ=J{(KF^ + ^ F,,] + dr. 

u 

If, in particular, <^' (t) > 0 throughout the interval, it is possible 

to change the variable of integration from r to x, and thus 

(9) 

h 

+ + VF, + v’F^, I dx 

• The varied curve, 

X=x + t=*(T), r=V+v = ^(v), toSvSt,, 

is known as a strong variation, since its slope no longer necessarily difien but 
slightly from that of the original curve at corresponding points. Indeed, F 
not necessarily a single-valued function of X. But {, ij, £1, ijJ., are assumed 
be condnuous and numerically small throughout the interval, and thus ♦’ (v) 
and W'(t) will not vanish simultaneously. In distincdon, the vatied curve oi 
11 is called a weak variation. 

g
 e

s- 
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totegral oan be tranafomed by integraticm bj parts, as was 
done in a similar case in § 2, witb the result 

i 

ao) 8^- 

Since 

~LP- y'F,,} = F^ + y'F, -y'^, 

we can give to 8/ the form: 

h 

(11) SJ=J(&y- y'&x) (f, - dx 

« 

where Sr«i end &y = r). 

If ( and j} are required to vanish at the end points of the interval 

the last term drops out. Formula (11) still holds true, even when 

this condition is not imposed, provided &x and By are suitably de¬ 

fined ; but a more elaborate definition of these variations is there 

needed.* 

“ Fariafion of the Independent Variable.” We can, in particular, 

allow the function ^(t) to be the function t. Then the first of 

equations (2) becomes ® = t. The variation, (, of this function is, 

however, no more and no less general than before, and since 

4'(t) > 0 here, we arrive at the same final result, namely, equation 

(11). Because the dependent variable x is here equal to the inde¬ 

pendent variable t, this case is sometimes described as the “ varia¬ 

tion of the independent variable.’^ But the expression is misleading 

• Cf. the admirable treatment of this point in Bolza, Vorleaungen Uber Vari- 

ccUonareeknung, p. 45. One of the weak points in the use of the Calculus of 
VuiaMons in physios lieB in the tacit assumption that tiie variations require no 
paiticulax definition, for everyone knows what Sy, tJ, etc., mean. As a matter 
of fact, their definition, except in the simplest cases like those of §§ 2, 6, is an 
exceedingly delicate matter, and Bolza’s contribution is most valuable. 

Sven in m simple a matter as the isoperimetrio problem of § 8 the foregoing 
deflnitiems of 9v, 3y' (§ 6), will nOt lead to the equation iS 0, ior this equa¬ 
tion will not be true; but suitably modified definitions of 8v< ^ vrill lead to 
the equation 9K =s 0 as a necessary condiUem. 
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if taken literally, for it is a oontradictioii in terms, —we do not 

define “ variation ” for other than dependent variables. The 

language is of a piece with that used to describe the method in 

diSerential equations known as the “variation of constants”, and 

with the expression “an infinitesimal constant.” It is little short 
of an Irish bull. 

EXERCISES 

1. Extend the method to the isoperimetric case, 

y> y') d*, K= J$(», y, y')dx 

« O 

and show that here equation (11) becomes 

t 

(12) hJ=z J'(8y _ y'hx) I P, + I d* + 

« 

I [.P+ X4> - y'F^, + X4>„,] 8® + F“r+ X*^% j ■ 

2. Extend the method to multiple integrals and show that, for 
the double integral 

■'“//"■('■’’“’S’l)'**' 
S 

equation (11) becomes 

(13) 1 1 dS, 
8 

provided that the variations &» = f, 8y = ri, 8« = f all vanish 
identically on the boundary. Otherwise, a line integral must be 

added, which is the counterpart of the last term in (11). 

Suggestion. Develop first the formulas which correspond to (4), 

(7), and (8), when 

x = <i>(\,n), j/ = i^(X,/*), 

remembering that (of. p. 150, Ex. 31) 

du_ d(u,y) /8(g, y) /^■(»> y) 
dx 0(X,/i)/ d(\,fi)’ V dy 0(X,fi)/ 0(X,fi) 
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8i Work Ex. 2 for the volume integial 

writing down in advance by inspection the probable answer. 

11. Haoulton’s Prineiple. Consider a single particl^, of mass m, 

situated at any point P: (x, y, z) and acted on by the attraction of 

a particle situated at the origin. The magnitude of the force, 

measured in the absolute units of dynamics, will be mkjr\ and its 

components, 

r* 
T=-tnkt, 

r 
Zss — mX.-‘ 

r 

There exists z. force function (p. 146): 

whose derivative in any direction gives the component of the force 

in that direction. In particular, it is seen that 

dU y dU y dU__ 7 

The motion of m under the influence of the force that acts is 

determined by Newton’s Second Law of Motion, Introduction to the 

CcUculue, Chap. XIII, § 1: 

dt* 

Its path is represented most naturally in parametric form, the time 

t being the parameter: 

X =/(0, 
Hamilton^ Integral. Consider the integral: 

>J(T+V)dt, 

where 

at = —, eta 
at 
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denotes the kinetic energy, and U, the force function (2), is Uie 

negative of the potential energy. This integral has an altogether 

definite value for the actual motion of the particle under the action 

of the given force. We can, however (by applying suitable extra¬ 

neous forces), cause the particle to go from its first position at 

(*b> y<i) *o) to its second position-at (®i, y^, 2,) along a different path, 

and we can choose arbitrarily the law of the velocity it shall have 

along this path. We will, however, agree that the total time from 

the first position to the second shall be the same as in the case of 

the natural motion. The integral I will have a definite value for 

this second path, and it will be positive, since the integrand is 

positive. , 

The totality of such values of the integral must have a lower 

limit, and it is not unlikely that, for some path, this lower limit 

will actually be realized, and thus the integral will have a minimum. 

A necessary condition that this be the case is that Euler’s Equation 

be satisfied; t‘.e. that 

(7) g(r-bja_dg(r4-_g)_o 
dx dt dx 

or 
d^x 

wi-r;r = 

with two similar equations for y and z. But these three equations 

are precisely the equations (4) which govern the free motion, with 

no extraneous forces acting. 

We may say, therefore, assuming that there is one and only one 

path which makes Hamilton’s Integral a minimum, that this is the 

path the particle will follow when acted on only by the forces given 

at the outset, and we are thus led to 

Hamilton’s Pbinciflb. The path which the partide JbUows when 

acted on by the given forces is the path that makes Hamilton’s Integral 

a minimum. 

The case of a system of b particles, m,: (»., y,, z.), attracted by r 

fixed particles under the law of universal gravitation admits a pre¬ 

cisely similar treatment. Here 

fy* =(Xi - %)* -f-(y« - 6,)* +(*. - o,y. 

(8) 
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TIm ixLtSfgral (6) haa the same form as befoi:e, aitd tha Bn s<];iucti!OitR 

of Biller are preoiselj the 3n equations givmi hj Kewton’s Second 

Lav of Motion, applied to each of the n particles, namely: 

(9) m. 
(PXi^dV 

m dx,' Sy,' 

m 

dz> 
vu . 1 n 
aT > * “ L 2, n. 

Thus in this case ve have proved Hamilton’s Principle mathemat- 

vedUy by means of Newton’s Second Law, assuming that Hamilton’s 

Integral has a minimum. And now we extend that Principle to 

oases not covered by other physical laws and make that Principle 

the defining element, the new physical postulate.* But the above 

form of statement, namely, as a minimUm principle, is not to be re¬ 

tained, as is shown by Example 2 below. It is rather the stationary 

principle, which consists in requiring that the variation of the inte¬ 

gral (6) vanish, or 8 J = 0. 

GxKnRALizED PoBH OF HAMILTON’S Princiflb. Let the kinetic 

energy of a material system be denoted by T, and its potential energy by 

— U. Then its motion is such that the variation of Hamilton’s Integral 

vanishes: ,, 

8 J (T-I-CT)* = 0. 

Here, to and (j are any two values of the time, t, which is the variable 

of integration, and hence the independent variable of the function T + U. 

Only such variations are considered as leave the end points fixed; i.e. to 

and ti are fixed, and all the dependent variables-{but not their derivor 

tives) must, for all variations, preserve the same value when t = to, 

and their values for t => tx must likewise be preserved.^ 

Examjde 1. Consider a system of particles having n degrees of 

freedom, but subjected to smooth constraints that are not moving. 

Let the natural coordinates of the system be 9x, •••, and let the 

• A “Principle ’’ in Mechanics has been well described by Mr. B. O. Koop- 
man as follows: “ According to the usage of the present day the word principle 
in ^lysioB has lost its metaphysical implication, and now denotes a physical 
truth of a certain importance and generality. Like all physical truths, it rests 
ultimately on experiment; but whether it is taken as a physical law, or appcaa 
as a conseqoence of physical laws already laid down, does not matter.” 

t add the remark, which would he superfluous except for great oonfusiou 
shown in the literature, that in Hamilton's Principle ihe time can not he varieA 
Of conrse it cannot, for to “ vary the independent variable " is to introduce a 
ooi^radiction in terms, to do viotonca to the definition of a variation; § 10. 
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lunette tsaeigy he * 

i,j = l,—,n, 

where A^f is a function of ...j q^. Let the forces form a conserya- 

tive system, and let the potential energy under these forces be a 

function of gi, •••, q^. Let the negative of the potential energy be 

denoted by U. Then a necessary and sufficient condition for the 

motion of the system is given by the vanishing of the variation of 
Hamilton’s Integral: ,, 

8 J {T-{-U)dt = 0. 

% 
For, Euler’s Equations here become 

d dT d{T + U) ._Q 
didqj dq, 

< = 1, 

and these are precisely Lagrange’s Equations. 

Example 2. To find the differential equation of the vibrating 

string. Consider, for example, the motion of a piano string or a 

violin string, the ends of which are fixed. Let the motion take place 

in a fixed plane, and assume (t) that no point of the string moves far 

from its position when the whole string is at rest; and (u) that the 

greatest angle which the string makes at any point with its line of 

equilibrium is small. 

Approximations are now introduced as follows, (a) The compo¬ 

nent of the motion of any point parallel to the axis of x (Fig. 96) is 

neglected, and thus the kinetic energy is given by the integral 

where p denotes the density of the string, assumed constant. 

(b) The potential energy is proportional to the square of the 

stretching, assumed uniform: = —y*- Let(r = l' —i. Then, 

I' — Zo = <r 4- (i — Zo)> and thus the potential energy, diminished by a 
constant, is approximately proportional to cr, since tr* can be neglected. 

Now , 

0 

Since dy/dx is small by hypothesis, the radical is seen to be ap¬ 

proximately equal to 1 4-J and hence U, which is the 



CALCULUS 4SS 

mg&Ufo of the potential energy, is given approzima^ely tiui 

ectpression: 

vrbere p is a constant 

We thus arrive at the following form for Hamilton’s Integral, 

corresponding to the above approximations ; 

dt = 

This is equivalent to the double integral of the bracket, extended 

over the fixed rectangle ^ ^ ^ > 0 ^ x ^ 1. And now Hamib 

ton’s Principle consists in setting the variation of this integral equal 

to zero. From this condition follows, as a necessary conditicm, 

Euler’s Equation, and thus we have: 

or 

a* =p/p, 

as the differential equation of the vibrating string. 

It would be a mistake, however, to think that Hamilton’s Integral 

attains its minimum value when y is a solution of Euler’s Equation. 

Consider the case p=p = 2, a =■ 1, 1 = *•. Then 

~ dap' 

A solution of Euler’s Equation is here 

y xs sin t sin a;. 

Let y be varied as follows: 

T = y+C, i = A sin sin mas, 
<1 — to 

where h is a constant which may be chosen axbiixarily small, and n 

and m ate integers. Then 
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The first integral in the last line vanishes because it is the varia¬ 

tion of /, formed for the extremal y. And now the last integral nn-n 

be computed directly and is seen to have the value: 

4 — <0 
m*(<i - to) 

By giving m and n suitable values, we can make the brace change sign. 

Thus Hamilton’s Integral is in this case neither a maximum nor a 

minimum for the extremal y; but it is none the less stationary, for 

its variation vanishes. 

Example 2 illustrates a further point. Hamilton’s Principle as 

stated above applies to the simple integral (6), and it is the varia¬ 

tion of this integral that is to vanish. But in solving the problem 

of Example 2 we have set the variation of a wholly different inte¬ 

gral — the double integral — equal to 0. Clearly, it must be shown 

that these two conditions are equivalent. It is not difficult to do 

so in this case,- and the student will do well to work out the proof. 

The incident brings out clearly the fact that Hamilton’s Principle 

depends for its very statement on the definition of variation (8), and 

so the formulation of this definition must precede any application 

of the Principle. This question is treated by Bolza; cf. the refer¬ 

ence given above in § 10. 

EXERCISES 

1. If the string is allowed to vibrate in three dimensions, show 

that its motion is governed by the simultaneous equations: 

dfi dx^' dp dx^ 

3. Let the string vibrate longitudinally, i.e. in its own line, and 

let a point which, at rest, had the coordinate x have the coordinate 

Xioax + u. Show that 

dP ^ dip 
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The'tBOBt geneial motion of the string is a 8ai>erposition of ihe 

motions of Sx. 1 and 2. 
» 

S. Vibrating Membrane. Consider a vibrating membrane, like a 

drum-bead, whose position of equilibrium is in the y)-plane. If 

its points move approximately in right lines orthogonal to the plane; 

if, moreover, their excursions are small and the tangent plane to the 

distorted sur&ce makes at most a small angle with the (x, y)'plane, 

then the potential energy is approximately 

s 

Find the kinetic energy, T, and show that the differential equation 

which governs the motion is 

dt* \dai^ dfl 

4. Vibrating Rod. Let a uniform straight rod vibrate in a fixed 

plane. It is assumed not only that the displacements of the points 

of the rod are small, but also that the angle which the rod makes at 

any point with its position of rest is so small that the contribution 

to the potential energy due. to the change in length of the rod is 

negligible. It can then be shown that the potential energy of the 

rod is proportional to the integral of the square of the curvature 

Show that Hamilton’s Integral here becomes 

and hence Euler’s Equation takes the form 

a* 
c 

P 

6. Vibrating Plate. Let a uniform plane plate vibrate trans¬ 

versely. It is assumed that the normal at any point makes so 

small an angle with the plane of rest, the (a;, y)-plane, that the con¬ 

tribution to the potential energy due to the inclination of the normal 

is n^ligible. The equation of the plate, in the neighborhood of any 

point (xb, y^, Uq), is then approximately 

»*. oiB«-b2ha^y'-1-by'*, aj=a^-l-a!', y = yo + y'- 
The potential energy of the plate can. be shown to be the double 
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integial of a hoxaogeneoua quadratic expressioa iu the throe ooefh- 

oiMlfcB I 1 

'2da?' 
a =» r: 

2dy^' 2 8xdy’ 

Since this expression must clearly be invariant of a rotation of the 

axes, it must depend on the two invariants of the above quadratic 

form, namely, 

i = i (mean curvature) 
2pi 2 

O =s a + 6 = 

®=sdb — h^=: — = total curvature. 
PiPi 

Hence the expression must be of the form 

where X and ft, are physical constants depending on the plate. We 

have, then, finally for the potential energy the expression 

JJ 
K/d^u pt Y V dS 
2\dx^'^ 8y^J 2 \dxdy) 

Show that the differential equation of the vibrating plate is 

./"i d*u , t, 
_ + 2:— 

8y* :) = ' 

6. Propohgation of Sound. In the case of sound waves it can be 

shown that the potential energy of the medium (air, water, iron, etc.) 

in which the disturbance takes place is proportional approximately to 

///©■“’'■ 

where u denotes the velocity potential which governs the motion of 

the individual particles (more properly, of the points of the material 

distribution). The kinetic energy is proportional approximately to 

Show that the partial differential equation which governs the phe¬ 

nomenon of sound waves is 

, f . 8^u . 8^u\ 

gp* gs*r 
where u denotes the velocity potential. 
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12. XeMt AfitioiL Let us consider, with Jacobi, the {oUowu^ 

integral, known as the action; 

<« 

where, as before, T and U denote respectively the kinetic energy and 

the negative of the potential energy, and % is a constant so chosen 

that, in the actual motion, i.e. the motion of the system under the 

action of the given forces, 

(2) T=U+h. 

We impose now, however, a further restriction, namely, that neither 

T nor U shall depend explicitly on t. It is assumed that U depends 

only on the coordinates of the system, and not on their time deriva¬ 

tives. The integral thus ceases to depend on t, — at least in those 

cases in which T is a homogeneous quadratic form in the time de¬ 

rivatives of the coordinates of the system, as, for example, when 

(3) 

or when T, in terms of the so-called natural coordinates, g,, g,, •••, q^, 

of the system, has the form 

(4) 

where depends on g,, •••, gj^, but not on their time derivatives. 

In these oases we may eliminate t even in form by introducing a 

parameter, t, which lies in a fixed interval, to g r ^ r,, and setting 

(6) t=.^(r), 

where ^'(t) and are continuous in the, above interval, and 

^'(t) > 0 at all points of the interval. 

Thus the motion of the system is described completely in terms of 

the parameter r. Let 

etc. 

and the action, 9, assumes the form: 
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(»; V2(C7+A) VSelr. 

We now proceed to vary the path, holding the end points (af, yf, sf) 

and (a^, y}, aj) fast. Through the application of suitable extraneous 

forces we can cause the system to describe the varied path at any 

rate we choose. And now we make use of this freedom of choice to 

demand that the rate at which the system describes the varied path shall 

be such that, at each, instant, 

(9) T=U+h 

along the varied path. 

This last condition has as a consequence that the time will not in 

general be the same for the varied path. Why should it be ? 

Since the force function, U, depends only on the position of the 

individual particles, T is determined by (9) as a function of r. 

But S is also determined by definition as a function of t. Hence t 

is determined as a function of t by (7), or 

(10) 

The Minimum Principle. Among all possible paths, it is reasona¬ 

ble to inquire what path will make the action a minimum. For, the 

integrand being always positive, we see that the action is positive, 

and so it must have a lower limit. Suppose, then, that this lower 

limit is reached, i.e. that there is a path for which the integral is a 

minimum, and suppose the requisite derivatives exist and are contin¬ 

uous for this path. Then Euler’s Equation will be satisfied, and, 

in the case of n particles moving without constraint, we shall have: 

or 

(11) dU 
ir\ V5 ) 

— 0, t = 1, 2, 

with corresponding equations in y, and 

Thus we have 3n differential equations for determining the Zn 

coordinates x,, yj, of the system as functions of the arbitrary 

parameter r. The time has been completely eliminated from the 
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problem of determining the path, and now'the time is subsequently 

deternuned by (10). 

The ehoioe of the parameter t is arbitrary, subject merely to the 

conditions of continuity (including derivatives) stated above. We 

may, tiien, in the final equation (11), choose r as a t, {.a set 

^(r)Br. Then (11) reduces to 

(12) 
8Xf’ 

and the 3n equations thus arising are precisely the 3n equations 

which express Newton’s Second Law of Motion for the particles of 

the given system. 

The result may, however, be obtained without specializing the 

choice of t. For, if dr, as given by (10), be substituted in (11), the 

latter equations take on the form (12). 

, Thus we have proved the Principle of Least Action in the case of 

n particles acted on by forces which admit a force function, on the 

assumption that the action integral, 9, has a minimum. As in the 

case of Hamilton’s Principle, so here, the minimum principle de¬ 

mands more than is needed. It is enough to require that the inte¬ 

gral be stationary. In fact, there are very simple cases in which 

the action is not a minimum; but its variation vanishes. For ex¬ 

ample, let a particle be projected vertically upward, and let z denote 

its distance below the highest point of its path. Then 

Its natural path is given by the equar 

tions: 

«=^PT*, t = r, To^T^Ti. 

Consider now a varied path having the 

same end points (to, sb) and (n, Sj), and 

having 

0, *(,^=00. 
value of the action for this jAth is seen to be: 
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a = |«iV^^Zo* + S!ii - 2c*^, 

and 1^6 time is: 

<i — *0 = — 2 Vc 

Th^ action and the time for the natural path are obtained from these 

formulas by putting c = 0. Thus the action is less for the varied 

path, — and the time is also leas. 

In the foregoing example, Euler’s Equation becomes an identity, 

except for z = 0, ■wnec it ceases to have a meaning. 

Mimination oftue Time. The principle of least action eliminates 

the time from the problem. The motion is determined in terms of 

T, and then the time is computed by a quadrature: 

T 'dfY_ s 
dr) U+h' 

This last equation may be looked on as the definition of the time. 

Example 1. To determine the path of. a projectile, the resistance 

of the air being neglected. 
Let the axis of » be chosen vertical and positive downwards. 

Then 
U—mgx, 

provided the level of the (y, z)-plane is 

Furthermore, 

r = ^(x* + Sf*+z2). 
z 

suitably determined 

Hence 

H = mVg J‘ V* Va:'- + y'* + dr. 

Euler’s Equations take the form: 

d Vgx' _ Vs d V^y'_n d 

■y/'^ dr y/S dr 

‘Prom the last two of these equations follows: 

ay' + 6z' = 0, 

ay + 6z + c = 0, 

i.e. the path lies in a vertical plane. Let this be the (k, y)-plane. 
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The' fiipt ecjuation now beoomea, if we set the parameter ra»mi 

d Vg _ Vl -f g 

Hence 
‘*»vrTg 2Vi ’ 

__ 

<!)■• 

r__dg__ 

* J 9(1 + 9) 

log g = log liL2 + loga, ®_l+9. 
a a 

^ Vo 
dx Vx —o* 

(y — 6)* = 4a(x —a), 

the equation of a parabola whose directrix is the axis of y. 

The time is given by the equation: 

In the foregoing solution it has been tacitly assumed that x 

steadily increases from to x^, since otherwise the choice of t( = x) 

would not be permissible. If x steadily decreases, it is legitimate 

to set — X = r, the formulas now being correspondingly modified. 

But if X decreases for a time and then increases, it is still possible 

to transform to x as the variable of integration; only the interval 

^ T ^ Tj must be divided into two intervals, in one of which x is 

decreasing (here, t = —x + const.) and in the other of which x is 

increasing; but the derivative, dx/dr, will not be continuous in this 

case. 

Finally, we have excluded the solution of Euler’s Equations: 

y' = 0, a' = 0. 

It is this solution that corresponds to a vertical path; yvmy^,taato. 
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2, Consider the path of a particle on a smooth snrfacei 

SB 3af(u, v), y = ^(«, v), z = ^(m, v), \rhen no forces act except the 

reaction of the surface. Here the potential energy is constant, and 
we may set 17= 0. Let m = 2, A = 1. Then 

r==^ = E^+2F^^ + G~ 
dt^ dt^ dtdt dfi’ 

and Hamilton’s Integral becomes : 

J{Eii‘ + 2Fuv+ Gv^)dt. 

Thus Hamilton’s Principle leads to the equations of the geodesics in 

the form: 

2—{Eu + Fv) = E„u^ + 2F,uu + G,v\ 
dt 

2-(Fu + Gv) = E.u^ + 2F.UV + G,vK 
dt 

If, on the other hand, we use the Principle of Least Action, we 

hare: 

where 

Vs dr, 

S = Eu'^ + 2Fu'v' + Ov'\ 

The condition that the action be stationary is here : 

d Eu' + Fv’ __ E..u'^ + 2Fyv’ + G,v'^ 

dr Vd' 2'\/ S 

d gn' 4- Gv' _ E.u”^ +2Fyv' + G,v'^ 

~dr Vd 2-\/S 

The two forms come together on the basis of the relation which 

defines the time: 

Here, 

and so 

r=U'+A = l, 

dt=VSdr. 
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EXERCISES 

2. C!any tiuongb the details in Example 1 of ihe text when x 
sometimes decreases aad sometimes increases. Show that the path 

is still given by the same equation, but the formula for the time is 

modified. Check all results by comparison with the elementary 

treatment of the problem, Introduction to the Calculus, p. 384. 

a. Carry through the solution of Eicample 1, setting t = y. 

8. A particle moves under the action of a central force attracting 

according to the law of the inverse square of the Prove 
(he theorem of equal areas: 

r® ^ = const. 
dt 



CHAPTER XVm 

THERMODYNAMICS. ENTROPY 

The object of this chapter * is to give the layman those physitad 

pictures which enter in the conception of Entropy, and to show 

how this conception attains its simplest and- most natural expres¬ 

sion in the language of mathematics, — namely, as a line integral 

which is independent of the path of integration.f 

The specialist in physics does well to trace step by step the physi¬ 

cal phenomena, tested by laboratory experiment in the broadest 

sense of the term, which led up to the introduction of entropy as a 

line integral; but it is a mistake to assume that this inductive 

method jtffords the sole access to the conception, and it may even 

be questioned whether this approach is the best for the physicist 

Why throw a smoke screen over the mountain he is to ascend ? 

The climb is hard enough at best; why not let him have a good 

view of the glorious summit before he starts ? 

1. Eeversible Changes and the (r),p)-Diagrain. Imagine a hollow 

brass cylinder, 1 cm. in cross-section, closed at one end and provided 

with a piston. Let a quantity of 

air t (1 gr., say) be present in the 

cylinder, and let the temperature, 

t, be the same throughout the ” piQ, m 

system and hence, in particular, 
constant throughout the air. Let the pressure of the air per sq. cm. 

be denoted by p, and its total volume by n. Then p wUl be the total 

force exerted by the air on the piston, and the altitude of the part 

of the cylinder occupied by the air will be v. 

• In the final editing of this chapter I am indebted to Mr. B. 0. Koopman for 

a number of helpful suggestions. 
t In this chapter we are taking the classical point of view, and not t^t of sta- 

tistical thermodynamics—interesting and important though that may 
- t The whole discussion applies equally well to dry ste^, the 
being, of coume, high enough to prevent condensation. More generally, p- 

plies to any perfect gas. 
449 
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tempecatme of the air will ofaaoge, and will not etm be the «uae 
throughout at a girm instant. If, however, the piston is moved 
slowly, and if the temjperatare of the walls of the chamber is nearly 
the same at all points at any given instant, the temperature of the 
iur will also be nearly uniform at each instant, and we may contem¬ 
plate the ideal case in which it is actually imijbrm at each instant, 
though different at different times. 

Although this condition can never be accurately fulfilled in ptao- 
tioe, nevertheless it is a sufficiently close approximation to the actual 
State of affairs in the most important cases, and physicists do not 
hesitate to begin the treatment of Thermodynamics by laying down 
the above hypothesis. We shall refer to it as the Fundamental 
Hypothesis and assume that it is fulfilled in all that follows. 

Just as, in a problem of analytic mechanics, we begin by isolating 
the system, so here it is the air in the cylinder which is the material 
system under consideration. The brass of the cylinder is merely 
a means of keeping the air in place and transferring beat to or from 
it. For we can heat or cool the air, for any given value of v, i.e. 
for any given position of the piston, by allowing heat to flow in or 
flow out through the walls of the chamber. 

We are now in a position to describe the physical picture which 
illustrates the thermodynamical phenomena in question. Let the 
piston be moved in or out. Mathematically this means that v varies, 
decreasing or increasing. Let heat be transferred to the air through 
the walls of the chamber, and let p denote the pressure correspond- 
^ ing to any given value of v. The pair of 

y® values (v,p) can be represented graphically 
y' by a point,* whose coordinates are v and p j 

and conversely, to an arbitrary pair of values 
of V and p, i.e. to any arbitrary point (u, p), 

__corresponds a definite state of the body of 

® Fia 112 ^ which the volume has the prescribed 
value V and the pressure is brought, by suit¬ 

ably applying heat, to the prescribed pressure, p. 

Continuous Changes of State. We illustrate what is here meant 
by two simple examples and proceed then to the general case. 

• Hie pair of values is reed in physics in the order p, ff,and ^yrioists qieak 
of the v)-diagram,'’ al^ogh they plot the point as Indicated. It would 
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(a) MkemeiK^anga. Suppose the brass cylinder containmg the 

air to be immewed in a huge tank of water at constant tempera¬ 

ture. Let the piston be slowly drawn out. Then the Fundamental 
Hypothesis will be nearly realized, and we are led to the conception 
of the ideal case, in which it is actually realized. The law connect¬ 
ing the pressure with the volume as the body of air undergoes this 
continuous change of state is: 

pv=C or pv=ptv^, 

and is known as Boyles Law* 

Thus a curve (here, a hyperbola) is described in the (v, j3)-plane. 
The process is accompanied by a steady influx of heat iuto the air 
from the walls of the cylinder. If, now, the piston is gradually 
pushed back, the point {v,p) will describe the same curve in the 
opposite sense, and a quantity of heat will be given out just equal to 
the amount taken up in the direct process. The process is, there¬ 
fore, described as reversible. 

(5) Adiabatic Changes. Suppose the brass cylinder and piston 
(now thought of as thin and thus having small volume compared 
with the body of air) to be insulated in asbestos, so that practically 
no beat enters or escapes in a considerable interval of time, as the 
piston is gradually drawn out. Thus we are led to the conception 
of a chamber whose walls are absolutely adiabatic, i.e. impervious to 
any transfer pf heat. The change of state that now arises under the 
assumption of the Fundamental Hypothesis is known as an adiabatic 

change, and the law connecting p and v is, for air, approximately t 

pr'-* =0 or pv^* = Po 

The process is reversible; cf. Fig. 113, p. 469. 
An adiabatic change can be realized approximately in a bicycle 

pump when the piston is rapidly pushed down, the pump and air 
being initially at a uniform temperature. 

(c) The General Case. Consider now an arbitrary curve in the 
(v,p)-plaae. We may imagine that the piston is slowly moved and 

* We may at point recall the Zaw of Charles, which asserts that 

where v is constant and T is the absolute temperature, § 2. ^ 
t The truth of this statement will be proved later on the basis of more funda¬ 

mental physical facts. 
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iame tune heat is snitahly poured into the body of aix, at 

eotraoted from it, so that the pressure, p, and the volume, v, are 
alvays oormected by the law indicated by the curve, the Fundamen¬ 
tal Hypothesis being assumed to hold throughout. Thus at any 
point of the curve the quantity of heat, measured in calories, and 
taken algebraically (positive or negative), which has been required 
since the beginning of the process to maintain the pressure as pre¬ 
scribed by the curve, has a definite value, Q. If the process be 
reversed, the curve being now described in the opposite sense, the 
amount of heat, Q', required will be the negative of Q: 

Q' — Q. 

2. The First Law of Thermodynamics. Work. The work, W, 

done by the body of ait on the piston is given by the equation (o/. 
Chap. XI, §§ 1, 2) 

where 0 refers to the path in the (u,p)-plane. 
Energy. Let the internal energy of the air be denoted by 17. It 

is proportional to the absolute temperature, 

r=:r+273, 

where t is the temperature measured in degrees centigrade; c/I § 6, 
(11). 

Finally, let the total amount of heat * in the body of air, measured 
in calories, be denoted by Q. 

We are now in ^ position to state the First Law of Thermody¬ 
namics. It is this. Let the body of air experience an arbitrary con¬ 
tinuous change of state, represented by a curve C in the (w, p)-plane. 
Then the heat that has flowed in, Q — Qo, is proportional to the 
increment in the internal energy, V — C^, plus the work, W, done 
by the gas on the piston, or 

(1) Q-Qe=A[{U-U,) + w), 

where is a constant which will be discussed presently. 

* In all diat follows we are dealing, not with the total amount of heat in the 
body, but wilh an amount introduced into the body (or extracted from it) during 
a given foofiess. It is convenient to think of this quantity as a difference, and a 
ifaiple way to do this is to start with the idea of the total amount of heat in the 
lx>dy at any time. 
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Jotdefa Equivaient. The nTimb$r ef units of work required to raise 
the temperature of the unit mass of water one degree is known as 
JoMa equivcderU of heat and is represented by J. In the c.g.8. 
system J has the value 427; i.e. the work done by gravity on one 
gramme of matter, when the latter is lowered 427 metres, is just 
sufficient to raise the temperature of one gramme of water one degree 
centigrade.* 

The constant. A, is the reciprocal of J, 

The Law admits extensions of the most varied character. Our ob¬ 
ject here, in confining ourselves to this simple case of the air in the 
cylinder and of reversible processes, is to give an absolutely concrete 
picture of what goes on in a typical case, and to set forth the mathe¬ 
matical methods which apply, not merely here, but in the more 
complex cases. 

3. Differentials. The First Law of Thermodynamics is often ex¬ 
pressed by physicists in the form: 

(2) dQ = A(dU-\-dW) or =:A{dU+pdv). 

What do these differentials mean? Are they the differentials of 
functions, and if so, what are the independent variables? Or are 
they merely approximations for increments, — the true equation 
being 
(3) AQ = yl(AC7-}-ATF) 

and if so, how are these increments taken ? 
The crux of the whole matter, in either case, is this question of 

what the independent variables are. The answer is that sometimes 

these are two in number, and sometimes only one. Thus in the case of 
the energy, U, this quantity is completely determined by v and p. 

If the gas, starting from an initial state (coj Po); passes continuously 
through any changes of state represented by a curve 0 in the (y, p)- 

plane, which comes back to (vo, po) and thus closes, the energy at 
the end of the trip will be exactly the same as the energy at the be¬ 
ginning. Hence C7 is a function of the two independent variables, 
V andp, and its differential, dU, has the value 

• For example, if a rain drop were to fall in vacuo from a distance of 427 
meUies (or nearly a quarter of a mile) into a pail of water, the heat generated 
by the shook would be just sufficient to raise the temperature of the rain drop 
one degree centigrade. 
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vhere dv «> Av and dp a: Ap are the arbitrary iodependent incremeata 
of these variables. 

Oa the other hand, the work, TT, can never be a function of v and 
p, regarded as independent variables. It depends essentially on the 
choice of the curve, C. What does dW mean in this case ? Clearly, 
the curve, C, must come first. Then we have a one-dimensional 
range of values, and the length of the arc, a, of C affords a natural 
choice of the independent variable. Or, if C is nowhere vertical, we 
may take v as the independent variable. In either case we have 

In the latter case, do = Av; in the former, dv s Z),v As. 
'Precisely the same remarks apply to Q. Like W, Q depends on 

the choice of O and, after this choice has been made, becomes then 
a function of a single variable, as s or v. 

We are now in a position to answer the question of the meaning 
of the differentials in equation (2). First, an arbitrary point, (v, p), 

is chosen; secondly, an arbitrary curve, 0, is passed through this 
point; thirdly, the quantities, U, Q, and IT are considered along this 
curve, under the assumption that the air experiences a continuous 
change of state, as defined by the Fundamental Hypothesis and rep¬ 
resented by C. Thus U" becomes a function of the single variable s, 
— the length of the arc of 0, and the same is true of v and p. 

Equation (2) is, however, still true, for it is a fundamental property 
of the total differential of a function that equation (B) of Chap. V, § 5 
is true, no matter what the independent variaUea may be. Thus equa¬ 
tion (2) really means no more and no less than that 

(8) D.Q = A{D.U+D.W), 

where the derivatives are taken along C. That, however, these de¬ 
rivatives should be connected by any such relation, and that the same 
equation (2) or (5) should hold for all curves C through a given 
point, is in no wise evident, either mathematically or physically. J1 
is in this egvatim that the physical law finds Us complete eapresaion. 

What of the other view, that (2) is a near-equation for (3)? 
Here, the differentials seem self-explanatory: they are close approxi¬ 
mations for the increments, and why worry ? 

How superficial this view is, becomes evident when we ask what 
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iihe inerementB axe. How doea the gas j^ss from the state xejwe. 
sented hy the point (v,p) to the state represented by Ihe p^t 
(v 4- Av,p + &ip) ? Vai there is an infinite number of possible paths 
connecting these points, and tome {»th most be followed, or we have 
no d^nite physical picture before us. But as soon as we introduce 
a path,—a curve C through (v,p),—we have all the preliminary 
physical pictures of the earlier explanation. And this is, in fact, 
the answer. Equation (3) requires precisely the same physical 
Betting described in the first explanation of equation (2). When 
all this has been done, we can then divide (3) through by As, let As 
approach 0, and thus deduce equation (5). Not even yet have we 
arrived at (2); for it is (6), a relation between derivatives, which 
expresses the physical facts directly, and the transition to (2) is 
purely mathematical. 

There is no short cut, no self-explanatory method, whereby (2) 
is written down without the intervention of any curve C and ihe 
derivatives and differentials pertaining to it, as Pallas Athene 
sprang, panoplied, from the head of Zeus. 

4. In Fartiotilar, the Differential dQ. Prom equations (2) and 
(4) it follows that 
(6) dQ = Xdv + Ydp, 

where X=A^+Ap, T=A^- 
dv op 

Here, X and T are functions of the two independent variables,. 
V and p, but the expression 

Xdv+ Tdp 

is not an exact differential. Physically, this is clear from the fact 
that, when the integral 

/ Xdv + Ydp 

is extended over a closed path, it represents the heat that has been 
transferred to the gas in the process, and this is not in general zero, 
for the work is not in general zero. Mathematically, 

^-iZ=:A 
dp dv 

«.Tid the right-hand side of this equation would have to be zero, if 
(6) were an exact differential; Chap. XI, § 7. 
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bj Boch a louotioia of v aad p that the new right-hand side does be^ 
eoqa§ Ml pxaot differential ? The answer to this question is affinna^ 
tise. It oomprises a physical law of the greatest importsmoe and 
it leads to the introduction of a new physical quantity,—eMropp. 
It is as follows *: The absolve temperature, T, a function, of the two 

ind^peadent variable* v and p, yield* through it*, reciprocal an integrei 

ing factor; <.e, 
Xdv+ T dp 

T 
i* an exact differential. 

Thus it appears that the integral 

(7) 
(n,pe 

taken along any path connecting the fixed point (i^, po) with the 
arbitrary point («, p), is independent of the particolar path chosen, 
and consequently defines a function of the two independent Taria- 
bles, V and p. It is reasonable to expect that this function, 

(8)- 

J) 

f= 
(».») 
fXdv+ Ydp 

T ’ J 
should hare a physical meaning, and this is, in fact, the case. The 
quantity (or ^ a constant) is known as the entropy of the body. 

By theffrst of the integrals (8) is meant nothing more or less than 
I 

/ T 
or 

this integral being extended along the curve C of the (v, jp)-plane; 
Chap. XI, 5 3. 

• We are, of necessity, omitting the physical considerations which lead in- 
dnctirdy to this statement, namely, the discussion of the efSciency of reversible 
imd non-ieveidble “ heat engines," the definition of the thennodynamie scale of 
temperatme, etc. For, u was said at the beginning of the chapter, our object 
is rather to ifiiow how the final form of the law reoeiTeB mathematical expreerion 
by means of ihe idea of line integrals and exact dlfterentials. The reader who 
wldies to inform himself concerning the physical phenomena which lead up to 
^ law msf refer to any of the standard works, s.p. Buckingham, Theory cf 

Thermvdvwtmie*; Blondlot, Introduction i I'itude de la thervmdynamtque; 
Ftfinear^, Iftermodynamique. 



THBRMODTNAMICB. ENTROPY 457 

We have here a notable example of the interplay between mathe¬ 
matics and physics. Expressions of the form (6), so-called inexact 
^iffwentials^” were studied in an earlier chapter from a purely mathe¬ 
matical standpoint, and it was shown analytically that an “ integrat¬ 
ing factor ” always exists; Chap. XIV, § 20. Here, the function (8) 
thus obtained has a physical meaning of prime importance. 

5. The Entropy of a Perfect Qas. In the case of a perfect gas, 
as air or dry steam, we have, on combining the laws of Boyle and 
Charles, 
(9) ‘ pV = ttpoVoT, « = Tf5. 
where 7'=273-|-t denotes the absolute temperature, t being the 
temperature centigrade, and and are values of v and p corre¬ 
sponding to a temperature of 0® centigrade. 

Thus any two of the three quantities p, v, T may be taken as the 
independent variables, and the third is determined as a function of 
these by (9). Beside the (v, p)-diagram we have now, by a purely 
mathematical transformation, a (t, «)-diagram and a (<, j())-diagram. 

In the case of the (t, i>)-diagram the First Law of Thermody¬ 
namics, §3, (2) here assumes the form 

(10) dQ = cdT+ldv, 

dT’ 
l = A 

dv 
■Ap. 

The coefficient c is constant (or nearly so); it is the spedfio heat 

for constant volume, or the number of calories required to raise <me 
gramme of the gas one degree.* Hence 

(11) U=^T. 

In the case of the (t, p)-diagram, the First Law of Thermody¬ 
namics assumes the form 

(12) dQ==:CdT + Adp, 

From (9) it follows, since the independent variables are here T 
and p, that 

* Moreover, 27 does not change with v When T is constant, and so a U„r/9v s 0. 
Thus l=;Ap. 1 is the latent heat of expansion. 
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(iS) O— e = , 

Cbf^psftiMon of dQ/T. For a perfect gas, equation (6) of f 4 
yields the following. Since 

A 

we Imre: 
C-c 

po, 17. 
C-c 

pv, 

V X = -4 — 
Ac 

Eenoe 

(U) 

^ <7 — 0 

^^c'^+o^e. 
T V p 

V. 

The entropy is given by the integral: 

fi- log(y*^P’)\^^%, 

(16) n ■» log(v‘j?*) 4- const 

or 
(16) 

TRe Owvea T = const, fi =s const From (9) it follows that the 
corves Ts const are the hyperbolas: 

(17) pv — const 

For air, the ratio C/c has the value 1.4. Hence the adiabatics, or 
curves of constant entropy, are the &mily 

(18) , pv^* a. const 

Thus it appears that the latter curves are steeper than the former. 

Two Dod/uotiona. (t) If we take as the curve in the (v,p)-plane an 
adiabatic, i.e. a curve corresponding to a change in which no heat is 

'absorbed or given out, then ^ = 0 at every point of the curve, and 
hence 

(19) 

two 
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C(mse<}ti6iitly, the curve* of eonatant entropj} are odiabattcs. 

(ii) If we take as the curve in the (v, p)-plaiie an iacAkeroMl, i.e. a 
oorre for which T=i Ti=i const., then 

(20) 
(■nn) 

Phytkal Definition of Entropy. From 
(19) and (20) it follows that it is possible J___* 
to define the entropy as a function of ^3 

(v, p) such that it is constant along an 

adiabatic, and its change along an isothermal, T ss 7\, is equal to 



CHAPTER XIX 

DBFIHITX HTTEGRALS AlfD THE GAMMA FUHCTIOH 

1. Tht IMsito Integral aa a liinction of a Parameter. lell>- 
aia’t Bnla Consider the definite integral 

where /(*, a), for a fixed value of a, is a continuous function of x 
in the interval a ^ x ^ b. Since the integral has a definite value 
for each value of a, it is a function of a: 

> 

(1) <^(«)== a) dx. 

We will require, furthermore, that /(*, a) be a oontinuoua function 
of the ttPO independent variables (x, a) throughout the region 

(2) ag X S 6, A S a 

It follows that ^(a) is a continuous function of a. The proof is 
immediate when we visualize the geometric picture. The surface 

of the definite integral formed for this value of a: 
i 

M 

Zf a' is changed 1^ a small amount, the plane shifts slightly, and the 
area also changes but slightly. This is precisely the condition that 
^(«) be continuous. 

460 
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DifflarenUathn of Apply tiie definition of a derivativo. 

Since Aa ia A constant with respect to the variable of integration, we 

can divide by it under the sign of integration, and thus we have; 

h 

As Acc approaches 0, the integrand approaches the limit dffda = 

fj{x, oo), and thus it would appear that the limit of the left-hand 

side, or D^<t>(a), has the value ' 

This is, in fact, the case when we impose the further condition 

that the derivative df /da exist, and that the function/„(», a) be con¬ 

tinuous in the two-dimensional region (2). But the proof is not so 

simple as one might think, for what we want is the limit approached 

by the integral of Aa//Aa, and there is no reason to suppose that 

this is the same as the integral of the limit approached by Aa//A«. 

In other words, it is a question of reversing the order of the opera¬ 

tions in a double limit — the process of differentiation and that of 

integration. 

It is not difficult, however, to avoid the fallacy just pointed out. 

By the Law of the Mean, 

(6) /(x, «o-f Aa)—/(t, «o) = Aa/.(a;, Oq-I-SAa), 0<d<l. 

Hence the right-hand side of (3) becomes 

h 

(6) //.(*, Oo -f 0Aa) dx. 

a 

^ We can form readily a geometric picture of the value of this in¬ 

tegral. 6 is, of course, a function of all the variables ia sight, namely, 

X, Oo, Ao. The equations 

z=fa{x,a), a = «o-ftfA« 

represent a space curve lying on the surface s=/,(x,«) and com¬ 

prised between the planes a = Og and a = og + A«. The projection 

of this Space curve on the plane a = og is a cohtinuous curve, 

Z = /.(*, Og + ^ A«), 
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futee tSw side of (S) is oontinaous, attd tka area tuider this 

aiUT«> or tiie integral (6), is thas seen to differ bat slightly from ^ 

valne of the integral (4) vhen Aa is nninerically small. This imm- 

pletes the proof.* Equation (4) is known as L^ni£8 Rule. 

VarieMe Limits of Integration. The limits of integration, a and b, 

may depend on a, or more generally they may vary in any manner. 

Let iS Iw a region of the (x, a)-plane as indicated in the figure. Let 

a have any value s' in the interval {A, ff), 

and let the segment 

a ^x^b, « = «' 

lie in 5. Then the integral (1) is a func¬ 

tion of the three independent variables 

(a', a, b). Dropping the prime we write 

0 
1 / 

1 k » 
1 1 1 fl 

a 1 i h 
Fia. lu 

(7) (a, a,h)= Jf{x, o) dx. 

The function/(®, a), together with its partial derivative/,(x, a), shall 

be continuous throughout S. It follows that ^(o, a, 6) is a contin¬ 

uous function of all three arguments, as is seen from the geometric 

representation corresponding to Fig. 114. 

The function <^(a, a, b) admits partial derivatives whose values are: 

% 

(8) ^ ^ “ ~/(®> *)> ^ =/(Pf “)• 
• 

In particular, a and b may be made to depend on a: 

(9) a s b = ca(a), 

where ^ and a are continuoiu together with their first derivatives, 

and the curves (9) lie in 5. We then have a generalization of Leilg 

Ilia’s Theorem which is embodied in the formula: 

(10) 

•Hie arithmetic form of the proof depends on the uniform eoniinuitif of the 
ftuietioa/«(a, a); tf, Goimat-Hedriok, Mathematieot Analyti*, vol. I, $97, or 
the author’s J^uU^tionentheor{e, vol 1, Chap. lU, $ 8. 



IMPROPER DEFINITE INTEGRALS m 
EXERCISES 

Verify Leibniz’s Rule by evaluating explicitly tbe integrals in 

eaob of tbe following cases : 

1. / e—dx. 2. r . 
»• r / J 1 + a*+x 

' dx. 

2. Several Parameters and Multiple Integrals. The foregoing 

theorems admit generalization to the case that the integrand de¬ 

pends on several parameters, 

a, yS, y, —)dx 

and also to that of multiple integrals, e.g. 

//>' y. «, y8, y, •••)axdydz. 

If the integrand is continuous in all the arguments, the function 

defined or represented by the integral will be continuous in all the 

parameters; and if, in addition, the partial derivative df/da, is con¬ 

tinuous in all the arguments, the function will admit a partial deriv¬ 

ative given by the earlier formula: 

t > 

In the case of multiple integrals we assume that the region of 

integration is fixed. Cases arise in hydromechanics, in which the 

region varies with the parameters, but the treatment does not belong 

to the elements of the Calculus. 

Example. The potential, u, of a continuous volume distribution 

of matter is defined by the formula. Chap. IV, § 6: 
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where the density, p, is a continnous function of the coordiimtes 

(<^ b, e) of a variable point Q in V. The point P at which the po- 

. tentixd is measured has the coordinates («, y, s); it is exterior to 

and 
fS = (a: — a)» + ^ — 6)* + (s — c)*. 

The force with which this distribution attracts a unit particle at 

P has for its components along the coordinate axes the values 

•y du 
^ dx' 

V— ^ 
dy' 

These derfvatives are given by the integrals 

du _ 

dx Iff f* 
etc. 

EXERCISE 

The potential of a surface distribution is given by the surface 

integral 

where <t denotes the density. Find the components of the attrac¬ 

tion at a point not lying on the surface. 

3. Improper Integrals. If we evaluate the following integrals 

ly the usual rule, we find; 

(1) 2V» 1 
X 

1 
= -2. 

-i 

The first result looks reasonable, for the area under the curve 

y — l/Va; in the interval (0,1) might well be 2 units; but the 

second result is absurd, for the curve lies above the axis of x 

throughout the whole interval, and so the area under the curve can¬ 

not be negative. 

Clearly, then, such integrals—integrals whose integrands do not 

remain finite — cannot be treated by the same rules as ordinary 

definite integrala They are examples of improper integrals (im- 

^gendU^ Integrale), and under this class is to be included one 

further case, in which the integration is extended over an infinite 

interval. We will, in fact, begin with this latter case. 
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27ke Improper Integral J*f{x) dx. Let /(») be oontmuous in the 

e 

interval c ^ ® < oo. Form the integral, 

(2) Jf{x)dx. 

Let X increase Trithout limit. If this integral approaches a limit, 

ve say that . * 

(3) //w dx 

converges and assign to it as its value the limit approached: 

Jf{x) dx = lTmJ* f{x) dx. 

If, however, the integral (2) approaches no limit, we say that the 

integral (3) diverges. No value is assigned to a divergent integral.* 

Example. ^e-^dx = 1. 

For, J‘ e~^dx = 1 — = 1 — g-* and lim I = 1. im I e 

Geometrically this means that the area under the curve 

y =/(*) = 6”* 

in the interval (c, x) = (0, x) approaches a limit, namely 1, as x 

becomes infinite. 

Functions defined by Improper Integrals. Consider the integral 

(4) 
so 

/ adx 

• The student will perceive the close analogy betvreen such improper inte¬ 
grals and infinite series. The integral (2) corresponds precisely to a, (Intro¬ 
duction to the OcUculus, Chap. XIV, § 2), and the integral (3) to tne infinite 
aeries, U) 4-ui-t- 
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It a ^0, we have 
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■ + a!* 

Heaoe the integral (4) converges, and its value is v/2 when a > 0, 

and — t/2 when « < 0. 

The integral (4) also converges when 

«e = 0. Equation (6) no longer has a 

meaning; but the integral on the left 

of equation (5) has,* and its value is 0 

for all values of x. Henoe its limit is 0. 

To sum up: The integral (4) con¬ 

verges for aU values of a, and it defines a discontinuous function 

^(a): 

ir 
2 

o 
9 

“ % 
Fia. 116 

(6) adx 

|, 0<a; 

0^ CC sss 0 ^ 

«<0. 

It should be pointed out that no question of indeterminateness 

can arise concerning equation (6), since cc is chosen first (a 0) and 

then held fast; %.e. a is a constant, and x is the variable. 

4. Tests for Convergence. Test by Direct Comparison. In¬ 

tegrand Positive. Let <ft (*) be conUnuous and positive (or zeroJ in 

the interval ^ ^ x < oo, where g is any convenient fixed number in the 

intervai c ^ x < od ; t.e., y ^ c. Let 

(1) 

converge. If f{x) is positive (or zero) and TWt greater than ^(x) at 

any point of the intervai y g x < oo: 

/ 
<^{x)dx 

e The ordinary definition of a definite integral as given in the Introduction, 
Chap. XII, or in the present volume, Chap. XU, admits immediate extension to 
the case that the integrand is undefined in a finite number of points of the 
interval, provided it is continuous in all other points, and remains finite in the 
Whcfie interval, i.e. 

|/(x)i<(?, ajixtib, 6, a positive oonstaat. 
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0 ^f{x) g ^{x), 

then the integral (3) § 3 converges. 

For, 

/ 
J'f(x)dx^ J, 
$ I 

Thus the integral (2), § 3, being equal to 

ff(x)dx+ Jf(x)dx, P 

<fh (x) dx ^ j <f> (x) dx sx 

is seen to increase (or remain constant) as x increases, but never to 

exceed the constant value A + B, where B denotes the value of the 

first of these last two integrals. Hence, by the Fundamental Prin¬ 

ciple, Introduction to the Calculus, p. 391, this variable approaches a 

limit, and the theorem is proved. 

The test is analogous to the Direct Comparison Test for Conver¬ 

gence in the case of infinite series whose terms are positive. 

Furthermore, as there, so here, a like test for divergence exists: 

Tbst fob Divbbgencb. Let ^{x) be continuous in the interval 

g ^x<<K, where g^ c, and let 

I (2) 

diverge. If 

/(*) ^ ^ 0, 

then the integral (3), § 3, diverges. 

The proof is left to the student. 

dx 

g g *<00, 

EXERCISES 

1. Show by direct evaluation that 

0<C, 0<gf, l<p, 

converges. 

2. Show in like manner that 

diverges. 

0 < (7, 0 < sr. 
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Test for convergence or divergence each of the following integnda, 

nsing the theorems of the text and taking, as the comparison inte¬ 

gral, (1) or (2), the integral of Question 1 or 2. 

5. Absolutely Convergent Laterals. If f{x) is continuoas in the 

interval c ^ * < «, and if the integral 

converges, then 

(2) Jf{x) dx 

c 

converges. For, since 

/(*)=!/(*)!-{!/(»))-/(»)}, 

it follows that 

« « • * 

Jf{x)dx^ J\f{x)\dx-J' {|/(a:)l-/(*)}da:. 
« « e 

The first term on the right approaches a limit, bj hypothesia 

Kow, 
0^|/(*)l-/(a!)S21/(»)l. 

Hence the second term also approaches a limit when x becomes 

infinite, and the theorem is proved. 

When the integral (1) converges, the integral (2) is said to con- 

verge abtdvidy. 

/ sin a; da; 

1-f-a;* ' 

Since 
sing 

l+ai? 
1 

l4-»* 

and since the integral of this last function converges (either by the 

test of S 4 or by direct evaluation), the given integral is seep to 

converge. 
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6> liililit Xtttl. We will still assuiae /(as) to be contiauoiiB 
in the interral c ^x<co. 

Test fob Convebqence. If there exiatt a constant k greater than 

1, such that xf'f{x) approaches a limit .* 

lim ir*/(x) exists, 1 < Jfc, 

then the integral Jf(x)dx converges. 

« 

Let the above limit be denoted by Z,. Then it is clear that 

a5*|/(®)J approaches a limit, namely \L\: 

limsB‘|/(x)|= |i|. 
«3Bee 

Let C be a positive constant greater than (L], It follows that, for 

all values of x sufficiently large, this latter variable will be less than 

®*l/(“'')I < <^. gr g X < CO , 

where g is a positive constant not less than c. Hence 

gr g x< 00. 

On setting (®) = C/x* and applying to the integral 

Jl/(»)|dx 
c 

the test of § 4, this integral is seen to converge Hence the given 

integral converges absolutely. 

A corresponding test for divergence exists, but it must be stated 

and applied with care. 

Test fob Divebgknck. If 

(i) limx/(x) exists, — (denote it by L) ; 
ttwo 

(ft) and this limit is not zero, 

ao 

then the integral J*f{x) dx diverges. 

Also, (/‘x/(x) becomes infinite, i.e. if 

limx/(x)=+«o or =i—eo, 

the above integral diverges. 
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Suppose tiiat L>0, 

tbaA L: 
Let a positive ooxtstaait C be diosm leu 

0<G<L. 

Then the variable xf{at) will become and remain greater tiian Oi 

*/(») >0, p g as < 00, (p > 0). 

ft 

Hence /(*)>-» 
X 

-and the integral is seen to diverge by the test of § 4. 

If i < 0, let f(x) sat — F(x). The proof of divergence can 

now be given in a similar manner. 

When xf{x) becomes positively infinite, any positive constant 

C can be chosen and the proof given as above. Finally, the case 

that xf{x) becomes negatively infinite can be referred to the case 

jr^st considered by setting f(x) — — F{x). 

Remark. If i = 0, we cannot infer either convergence or 

divergence, as the following examples show. In each case, L — 0. 

€6 

Here 

and thus this integral diverges. 

= log log* — log log 2, 

and this integral converges. 

The tests of this paragraph are analogous to the Test-Ratio Test 

for the convergence of series, Introduction to the Calculua, p. 394. 

Finally, the case of the improper integral 

J"f(x)dx, 

—40 

where f(x) is continuous in the interval — w < * g c, can be treated 

in a similar manner, or referred back to the above integral by means 

of the drnnge of variable, * = — t. 

Example 1. jer’^dx. Here, any value of A: >1^ leads to the 

proof of ccmvergence. Set, for simplicity, k at 2: 

**/(*) sfier^. 
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Bj tlie metiiod oi Chap. X, § 3, it is shown that this fnnotaon 

approaches a limit, and hence the integral converges 

Example 2. *008 a! da; 

V1+ af 
Here, any value of It between 1 and 

f can be used, for 

^ cosa! 

Vl +** 

Thus the integral converges. 

cosx 

EXERCISES 

1. Show that the integral 

8. Show that the integral 

/dx 
— converges. 
Vx* — 1 

/* . - di 
j/ VT+x+lF 

diverges. 

Test the following integrals for convergence or divergence, using 

each time the simplest method. 

Vl + ®* 

/' xdx 

Vl +®* Vl + ** 

e. fe-^ooaocxdx. 7. I atf*"‘e-*da!. 8. I e-*log(l+*)dx. 

0{x)e-*dx, 0(x), any polynomial. 

10. The same integral, when (?(x) is replaced 1^ any feaction, 

B(x). 

log xdx. yu-. tr* (log x)" dx, 0 < n. 

Prove the following theorems. The integrand /’(x) is assumed 

continuous in the interval o ^ x < «. 
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Xt.' If |i.^6onstant k gi«ater titaa unity exuts such tikt ~ ' 

a!*’/(sB) romaina finite * (*! > 1) 

then tile integral (2) converges. 

i4.~ If xf(x) remains numerically greater than some positive con 

stant h for all values of x from a definite point on: 

A<1 */(*)!, g^x<<!o, where 0 < A, c^g, 

the integral (2) diverges. 

7. Alternating Integrals. Consider the integral 

dx. 

When X approaches 0, the integrand approaches 1, and the fimt that 

the integrand is not defined for x «= 0 is unimportant (foot-note, 

p. 466). 

All of the foregoing tests fail to establish either the convergence 

or the divergence of this integral. There is, however, a simple and 

direct treatment, analogous to that used in the case of alternating 

series. Introduction, p. 398. Write 

d.-(y+ 

Sir mw m 

mir^x< (m+l)ir. 

(aa-l)r mw 

The terms in the parenthesis are alternately positive and negative, 

as is seen by plotting the graph of the integrand, 

_8inx 

Since the arehes steadily flatten down, the numerical value of the 

area bounded by an arch and the axis of x steadily diminishes and 

approaches 0, and thus we see that the integral conveiges. The 

detail sire as follows. Compare 

mm 
^eiaxdx 

with 
Csipxdx 

j * J » Nr 

• i.*. nomericaUr ]e« tbm tome positive ooostaat, 01 

1*^/(*)!< O. esx<m. 
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In first integral, set 

x=a{m — l)ir + t, and let 

in the second integral. Thus we find 

'/si 
sintdt 

and 

\ 

a; ab mir +1 

8in<dt 

mw +1 

Clearly, the numerical value of the second integral is less than that 

of the first. Moreover, the numerical value of either approaches 0 

as its limit when m = ». Finally, if m,r^x<(m + l)r, the last 

integral approaches 0. Thus the given integral can be written as 

an alternating series, which satisfies all the conditions for conver¬ 

gence. 

The Fresnel Integrals. In his investigations on light, Fresnel was 

led to the following integrals: 

COBXdX 

yTx 

The second of these involves the treatment of § 8 because the inte¬ 

grand becomes infinite at the lower limit of integration. The first 

can be shown to be convergent by the same reasoning as that set 

forth above. 

Let us make the transformation 

( r= s/x, X = (*. 

Then m 

/ 
sin X (to 

V* 
sint^dt. 

Since the variable on the left approaches a limit when x » the 

variable on the right must approach a limit when t ^ ooj and thus 

we see that . 

/■ sin t*dt 

converges. And yet the integrand oscillates forever between 1 

and — j. The explanation of the paradox lies in the fact that the 

graph of the fimetiotk 
y V sin P. 

though (wcillataiag offlatmuMlv from v = 
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made up of axdws Those bases are growing shorter and shorter, 
For, the carve crosses the axis when 

fi sa nir. 

Thos the length of the base of an arch is , where 

tin 

Henoe = or 
‘•+1 + »• 2v n 

EXERCISES 

1. Show that the integral /XOOBX j , A ^_d», a^O, 

oonverges. 

3. Prove the theorem; If ^(x) is a positive monotonic decreasing 

function, continnons in the interval c g x < oo, and if lim if> (x) = 0, 

then the integrals, 

/ 
^(x)sinxda>. 

/ 
^(x) cos (ax + b)dx, a^O, 

converge. 

8. /Prove that the integral 
s» 

/ 
cosa^dx 

converges. 

8. Tnfliiito Xntegraads. The first example in { 3, (1) iUustrates 
tim case , 

in whi(di/(x) is continnoos at all points of the open interval 

(2) o<xS&, 

bat does not remain finite in the interval. The treatment of this 
case is paralld to that of the c^e just disbossed at length, and the 
proofs arb left to the stndmit. First, the 
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ITq/initioft of Cbnuergenoe. If 

H 

ftppicacheB a limit ■when c approaches 0, the improper integral (1) 
is said to be convergent, and its value is defined as limit: 

(4) 

If the 'variable (3) approaches no limit, the integral (1) is said to be 
divergent, and no value is assigned to it. 

It is readily shown by direct computation that 

> 

(S) 
f Gdx 

J (a - a)’’ 
0<1<1, 

converges {I, a constant). Also that the integral 

(6) 0=^0, 
diverges. 

On the integrals (6) and (6) are based the Comparison Tests and 

the Limit Tests for convergence and for divergence. It is assumed 

throughout that/(x) is continuous at every point of the interval (2). 

CoMPABisoN Test fob Contkbgebcb. Jjet ^(x) be continuous 

and positive (or zero) tn the interval (2), or in the UJUhand part of 
that interval: 

0^+(x), o<xSc§6j 

and let 

converge. If 
a<x^c, 

ihen the integral (1) converges. 

CoMPABisoB Test fob Diveboeboe. Let ^ (z) be continuous dnd 

positive (or zero) as above: 

0 ^ ^(z). 

« 

<^{x)dx 

a<z g c g 6, 
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tmd let 

diverge. ^ 

» 

then ike integral (1) cUvergea. 

Absolute Convergence. If 
i 

e 
converges, the integral (1) converges, and is said in this case to be 
absolutely convergent. 

Limit Test fob CoNVEKOBircE. If there exists a jpost^ive constant 

I less than 1 such that (x~-ayf(x) approaches a limit when x ap¬ 

proaches a; 

lim (x — a)'/(*) exists, 0 < Z < 1, 

then the integral (1) converges absolutely, 

llie proof is given by the aid of the Comparison Test and the 
c<mvergent integral (5). 

Xihit -Tbst fob Diveboebcb. If 

(i) lim (x — a)f ix) exists — (denote it by L), 
m*stt 

(ti) and if the value of the limit is not zero, L^^O; 

then the integral (1) diverges. 

Also, if lim (* — a)f(x) =» + oo or — oc. 

the integral (1) diverges. 

There is no important class of alternating integrals, like those of 
{ 7, to be ccmsidered here. 

Example 1. 
/■ 

dx. 

When « ^ 1, the integral is a proper integral. When a => 0, ire 
tore. . . 

1 
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and th« fona of the mteg^Wd auggrats diTergtooa. In fact, 

*/(*)“ e-*, 

and this function (£) approaches a limit (namely, 1) when x ap¬ 
proaches 0; and (u) the value of the limit is not 0. Hence the 
integral diverges. For any smaller value of a, the integrand is still 
larger, and hence we have divergence. 

When 0 < « < 1, it is easy to see how to choose Z, namely; 
Z ss 1 — a. Then 

x'/(x) = e-*, 0 < Z < 1, 

and since this function approaches a limit, the integral converges. 

Example 2. 0<y. 

Here, any value of Z between 0 and 1 can be used to prove con¬ 
vergence : 

x'/(x) = x* (— log x)y ■■ , _r- log xT 

L J 
It is readily shown by the usual method (Chap. X, § 2) that the 
function within the brackets approaches 0 when x approaches 0, and 
hence the whole expression approaches a limit (namely, 0). 

9. Contiiiuatioii. Consider the integral 
1 

/ dx 

Vl — * 

Hei%, the integrand becomes iniinite at the right-hand end of the 
interval. 

The above is an example of the integral 

where/(x) is continuous at every point of the open interval 

(2) a g X < 6. 

This integral is defined to be convergent if 
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appnmdies a limit irlmn « approa^iM O4 and its value is (kfined as 
tills limit: % 

w 

tiie integial (3) approaohss so limit, the integral (1) is said to be 
divergent, and no value is assigned to it 

It is readily shown by direct computation that 

(6) 
/* Cdx 

J (6-*)*’ 0<I<1, 

converges (I, a constant). Also, that the integral 

(6) 
rcd Cdx 

X 
C¥=0, 

■ diverges. 
On these integrals are based the Comparison Tests and the Limit 

Testa for convergence and for divergence. 
The Comparison Tests for Convergence and Divergence are similar 

to those of § 8, the interval a < w ^ c now being replaced by the 
interval 

c^x<b, where o g c < 6. 

The student should write these tests out in detaU, and prove them. 
Absolute Convergence is treated as in the earlier cases. Finally, 

the Limit Tests for Convergence and Divergence are similar to those 
of S 8, the variables on whose limits the tests turn now being 

(6-*)‘/(®), 0<I<1 

and (6 — x) /(*). 

The student should also write put these tests in detail, and prove 
them. 

1 /j„ 
-- Since 1 — as* contains the simnle linear 
vrri? 

factor 1 — ai, it is clear that I —^ will be a value of I, for which the 
limit Test for Convergence will apply; 

(l-xMx) 
VI — as 

Vl — ^ V(1+*)(!+»*) 

Hence lim (1 — x)^f(x) exists, and the integral convenes. 
*d4 
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10. BiieontiiiaitiM thA Interrtl. The second example of 
§ 3, (1) illustrates tne case 

ill which /(*) is continuous at all but a finite number of poihts 

^1) of the interval a g a: g 6, or the interval c g a: < oo. 

Let Cl, Cj,*" be points chosen, one in each of the sub-intervals 

into which the interval (a, b) is divided by the points ^i, &, •••. 

Consider the integral of f (x) in each of the latter sub-intervals. In 

some, it may be a proper integral. If it converges in every one of 

these sub-intervals in which it is improper, then the integral (1) is 

said to he convergent, and its value is defined as the sum of the inte¬ 

grals, proper or improper, in these intervals. In all other cases, 

the integral (1) is divergent, and no value is assigned to it. 

Thus the second integral of § 3, (1) diverges. 

Example. The Beta Function, B{m, n), is defined by the 

integral i 

B(m, n) — J*— xy-'^dx, 

when this integral converges. For what values of m and n will con¬ 

vergence take place ? 
Let f be a constant between 0 and 1. Then each of the integrals 

e 

(1 — x)”'‘dx, 

must either be a proper integral or a convergent improper integral. 

It is easy to apply the foregoing tests to each of these integrals 

and thus to show that the Beta Integral converges for all points 

(to, n) lying within the first quadrant, and for no others. 

EXERCISES 

1. Carry through the details of the proof of convergence of the 

Beta Integral 

8. By making the change of variable, f = 1 — x, show that 

R(m, «) = B{n, to). 
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8. For vhat values of p and q will the int^fiai 

if — 

3 

J‘ 8in*’‘*a!co8»~‘xda! 

converge? 

Are the foUowing integrals convergent? 

dx 

Vxlogx 

logxdx 

—eo 

/■ 
, /’logxd! 

V 8. 

e*logx*dx. 

dx 

log a? 

6. 

9. 

/e-»‘dx 
logx* 

-« 
1 ^ 

J*e *dx. 

11. The 0ainma Fnnotion. Consider the integral 

(1) 

This integral wOl converge if each of the integrals 

'(2) dx, 

a» 

which ia improper, converges. 

The second of these integrals converges for all values of a; § 6 

Ex. 7. The first is a proper integral if « ^ 1. When « ^ 0, i1 

diverges ; but it converges if 0 < « < 1. 

Hence the integral (1) converges for all positive values of «, and 

for no others. Its value is the Gamma Function, 

(3) r(«) = ^x“~'e-*c{x, 0<«<oo 

7%e Difference Equation. The Gamma Function satisfies the dif 

ference equation: 

(4) r(« + l) = «r(«). 

For, if we form the integral 

I 
x^e—dx 
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mA t^beii by parte, we bad: 

^a!“e“* dx =— **€”• + a ^ac*"' e-*dx. 

Now allow X to increase without limit. The left-hand side approaches 

r(a -f-1); the first term on the right approaches 0, and the second 

term approaches ar(«), q. e. d. 

Th£ Factoricd Function. The value of r(l) has already been com¬ 

puted, § 3, Example: 
r(i) = i. 

From the difference equation (4) we infer, on setting a = 1, 2, 3, 

• ••, n 4-1, successively, that 

r(2) = l-l, r(3) = 2r(2) = 2.1 = 2!, r(4) = 3.2.1 = 3!, ... 

(6) r(ii-l-l) = n!. 

For this reason the Gamma Function is sometimes called the Facto¬ 

rial Function. It interpolates between the values of nU 

The Graph. We have: 

(6) r(0+)=-»-oo. 
1 1 

For, r(a) = J^x'^^e-’dx+ J* x'-^er^dx. 

Since e~* > «“* in the interval in question, 

1 

r(«) > Cdx = 

pjul thus the truth of (6) is established. 

That the function r(a), as defined by the integral (3), is continu¬ 

ous, is true; but the proof belongs to a later stage in analysis. 

Likewise, the fact that the derivative of the function is givmi by 

Leibniz’s Rule: « 

(7) r'(a) = fx’^h-^logxdx, y{a) = J 
and Gint the second derivative is found by applying Leibniz’s Rule 

Again: 

(8) r"(a) = ^(log *)* dx. 
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Tbmo i^togiais can, bowever, be shown to oonTOrge, \iy ottr pies- 

ent methods. We obserre, in particular, that the integrand in (8) 

is always positiTe, and hen(» 

r"(«)>0, 0<«<flo. 

Thus the graph of the (xamma Function, 

(9) y = r(«), 

is always concave upward. Since it has the positive axis of y as an 

asymptote and goes through the points (a, y) = (n +1, n!), it is easy 

to plot the curve in character. 

2%e Function T{a) for «<0. When «<0, the integral (1) di¬ 

verges and so fails to define a function. We can, however, extend 

the definition by means of the difierence equation, (4). Let a lie in 

the interval 
- 1 < « < 0. 

-Xhen F(«( -4-1) is defined for these values of a. And now we agree 

to define r(«) there by means of (4): 

(10) r(<x) Fl5±J). 
a 

Thus r(a) is negative in this interval. The graph (9) is continu¬ 

ous, and it evidently has the lines « = 0 and a = — 1 as asymptotes. 

Moreover, it can be shown to be concave downward throughout the 

interval. 

The process can be repeated. Let a lie in the interval 

- 2 < « < -1, 

and define T(a) by means of (10). The function is positive in this 

interval- The graph of (9) is continuous, and it has the lines 

a s — 1 and a = — 2 as asymptotes ; it is concave upward. And so 

on indefinitely. 

The ^dent can now readily plot the curve in character. An 

accurately drawn graph is shown by Duval in the Annals of MctOhS- 

mcOics, 8er. 2, vol. B (1904), p. 66. 

JPcMu tf the Gamma Function. The function r(a) hi^ been tabu¬ 

late.* Because of the difference equation (4) it is sufficient to con¬ 

struct su<ffi a table for values of the argument from 1 to 2. 

*Legeadi«, TratU desfoneUons ettipUques, Paris, 1880, vol. 11, p. 468. 
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Swcmpte. To deiieriiiine P(2^1B) from Peitoe’s Tablet, p. f40. 
Let a mi 1.515. Then . 

r(2.515) = 1.616 X r(1.616) == 1.343. 

EvaltMtion o/ r(|). If a = ^ in tie integral (1), and if we malrA 
the change of Tariable, t = Vx, we find 

r(|)-2 Je-»dt. 

This latter integral has the value JVv; c/. § IS. Hence 

(11) r(|) = V;. 

EXERCISES 

1. By means of the transformation (= e-*, show that 
1 

r(a)=y’(iog^)‘“' dt. 

Prove: 0 < a, — l<n. I „n+l 

Suggestion. Let y = ax. 

1 

S. Prove ±1 
(m + l)*+i 

—l<n, — l<m. 

Suggestion. Let t = x"+i in Question 1. 

4. Test the integral of Question 1 directly for convergence and 

divergence. 

6. Compute r'(a) and r"(a) by Leibniz’s Rule from the integral of 

Question 1, anH show that the resulting integrals converge. 

1 

6. Compute: f-^xlog {l/x)dx 

7. Prove that 

1.3.6 — (2r» -1) = 
Vir 

8. Prove that 
1.3-5 —(2n-l)^ r(n+l) 
2-4'6”- 2n V7rr(n+1) 
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. IS. fS« IMa 
the integnil (§ 10) 

a) 

and shown that 

We haTB defined the Beta b7 

a 

— af)*^ das, 0 <n, 0<m, 

(2) B(m, n) = jB(n, to). 

If we make the change of Taxiable in (1): 

we find: 

(3) 

y 
X 

1-x’ 

JB(m, n) = y~‘dy 
(1 + y)"^ 

It is possible to evalnate the Beta Function by Tnyiana of the 

Gamma Function. The formal work is as follows. From § 11, Ex. 

2, we have, on setting n + 1 — m : 

Hehoe 

r (to) = ^e-’* dx, 

r(m)o“-‘e~* = A 

Kow, integrate each side of this equation with respect to a from 0 

to 00. If the iterated integral on the right were a proper integral, 

we could reverse the order of the integrations and thus obtain: 

(4) r(TO) ^n-ig-. ^ dx e-»a+*) do. 

V 
The value of the integral on the left is r(n); that of the first 

integral to be computed on the right is, by 111, Ex. 2; 

r(TO + n) 

(l+aj)«^' 

Bence the righthand side of (4) xeduces, by the aid of (3), to 

r(TO + n) 

/ (l + a)** 
r(TO + «). 
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(«) ^ r(m + «) 

The aboTe reTersal of the order of integrations is a question of 

double limits and reqtiires proof. The proof, however, belongs to a 

later stage in analysia 

EXERCISES 

Prove the following equations to be correct 

r a^dx ^ VvT(n + j) 
2r(w + i) 

2. I sin**® cos"® da! =^^ 

v' 2r(!lf!Vl) 

/dx 

> rCp+i)r(=^) 
4. /a!"(l-ar)'d®=—--i 

v' „r(,+l+!!^) 

13. Improper Doable Integrals. Let f(x,y) be continuous at 

every point of the region 

S: 0^®<«, Ogy<oe>. 

The improper double integral 

(1) x,y)dS 

is said to amverge if the corresponding integral, extended over a 

variable finite region 5 lying in the first quadrant, approaches a 
limit, no matter how S expands, provided merely that an arbitrary 

finite region r lying in S ultimately is included in all tiie regions S 

from a definite region S on. In case the integral (1) converges, the 

limits corresponding to the various possible choices of the variable re¬ 

gions S are all equal, and this is the valve assigned to the integral (1), 
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Tliuft when (1) converges, it necessarily converges aftaoiuM^ is. 

// |/<*,y)|d5 

converges, 
lf,'ii6. particular, f{x, y) does not change sign in /S, it is obviously 

necessary and sufficient for the convergence of the integral (1) that 

it converge for one special set of regions S chosen as above. 

The extension of the definition of convergence to other open 

regions 5, whether finite or infinite, in which /(®, y) is continuous, is 

obvious. 

CJonsider in particular 

(2) e-^d8. 

extended over the first quadrant. Let the region S be chosen as 

the quadrant of a circle, 0 g r g .S. Then 

re~^ dr = T (1 — 
4 

Hence the integral (2) converges and has the value ir/4. 

^ext, choose as the region 2 the square 

A, OgygA 

We have: 

//' ~’^~^dS= ^e-'^dy J*e'^dx • 

How let A become infinite. Thus we infer that 

and this^latter important integral is evaluated. 

14. SvaliiAtuBi of Definite Integrals by Differentiation. It is 
sometimes possible to determine the function defined by a definite 

integral by differentiation. Only the formal work can be given here, 

sinde t^ justification of Leibniz’s Buie in the case of improper in* 

tegralo requites a more extended study of analysis. 
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j^asofltpfe 1. Consider the integral 

(1) 

It converges absolutely 

(2) 

c"** cos ax dx. 

for all values of a, since the integral 

converges; § 13. Differentiate (1): 

(3) 
da 

sin ax dx. 

This integral is also seen to converge. Transform it by integration 

by parts, taking xe-*‘dx as one of the factors. Thus we find: 

/ a!e-**8in«a!dx=|y c"** cos ox d®. 

Henoe (3) becomes: 
du_ew 
d«" 2 ’ 

Integrating, we have; 

logtt=a—4-C, or u = 

To determine the constant of integration, set « = 0. From (2) 

we have w =» V5r/2 = k, and the final evaluation of the given 

integral is 

(4) ^s~*' cos axdx = 

Example 2. Let 

(5) 

Here, — = — 2 « fx~^ ^ 
da J 

And now it is a 

IiCt y ast 

skillfully chosen substitution that leads to the result 

(0 < a). Thus 



ammm 

'■^■ss^2u, u = Ce~**, C’awXl. 
dtc 2 

“’VdasniVire-*", 0 ^ a; 

dx =s (no restrictions on a). 

16. Other Methods. Sometimes the form of the integrand sag 

gests a special method. 

1 

Example 1. Develop the factor 1/(1 — ®) into a 

senes: 
= 1 + ® + + •••. 

Hence (Tabka, No. 427), 

It happens that the value of this series is well known (c/. Pier- 

pont, Ikmctions of a Complex Variabk, p. 289): 

(1) Sf = 
W g 12^2* 3* 

Thus the value of the integral is obtained. The proof, however, is 

incomplete, since it remains to show that the series can be integrated 

term-by-term. This proof belongs to a later stage in analysis. 

Example 2. ;. If we make the change of variable 

» = «ey (and then replace y by ®), we find that 

/sin a 

- 

has ^ same value for all positive values of et. Now, write 
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Applying tlie method of integration by parts to the second integral, 
we find: 

rs^^_cos^a 1 r 
J X TU aj 

cos ax 
dx. 

Let a become infinite. The limit of the first term on the right 

is 0. The integral in the second term is numerically less than 

1 

IT 

Hence the second term also approaches 0. Thus the integral on the 

left of (4) approaches 0. 

The limit dx is one we have not met, nor is it 

readily determined. But it is well known in the theory of Fourier’s 

Series and is shown to have the value 7r/2. 

Thus we have, finally : 

^ when a > 0, 

0 “ 0 = 0, 
ir 

2 
« o < 0. 

Contour Integration in the Complex Domain. By means of 

Cauchy’s Integ^ Theorem, Chap. XX, § 14: 

C/(*)d* = 0. 

many definite integrals in the domain of real q^uantities can be 

evaluated. The method is set forth in treatises on the Theory of 

Functions of a Complex Variable; cf Goursat’s Mathematical Analy¬ 

sts (translation by Hedrick and Duiikel), vol. II, p. 98, and the 

anthor’s JiSmMionentheone, voL I, Chap. 7, § 3. 
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FkirtAer Beferencea. Byerly’s ItUegnl CMoulua, 2d ed., Chap^ VIII, 

(watains much that is suggestive, particularly §§ 91-94; but $ 98 

is not helpful. Schlbmilch, Compendium der Mheren Anodyaia^ vol. 

11,3d ed., contains a chapter on the Oamma Function which is fairly 

accessible for the beginner. 

EKeRCtSELS 

j piogxdx 
1 + aj 

ir* 

12* 8* 

2 nogxdx 

J i— 

/e-“sin 

* 

I. f = I e-i-i. Suggestion: = 2 f ae-^“+^ do. 
I l + 3f 2 1 + ®= J 

log ^ ^ dz ■■ 
c* — 1 

sm mz ^ m ^ Suggestion; Differentiate, 
a 



CHAPTER XX 

COMPLEX NUMBERS AND THE THEORY OF FUNCTIONS 

1. The Age ^ Fable. Imaginary numbers came into the science 

through the attempt to obtain a solution of the quadratic equatum 

in all cases. The particular quadratic, 

** + 1 = 0, 
obviously cannot be satisfied by any integer, fraction, or incom* 

mensurable number, whether positive or negative, and these were the 

only numbers known to the science when the calculus was invented. 

If a pure quadratic be written in the form 

** = a, 

where a denotes a positive number or zero, then a root of this equa¬ 

tion is r- 
x= Vo. 

If a = — 1, we can still make the mark, V— 1; but it has no 

meaning. For only those things have meaning in mathematics 

which have been defined. 

This statement must not, however, be understood as barring the 

road to further definitions, and it was, in fact, this thought, — the 

possibility of finding a meaning, as it appeared to the mathematicians 

of the eighteenth century; of extending the number system by intro¬ 

ducing a new definition, as we should say, — that, first vaguely, then 

ever more clearly, guided our predecessors in their quest for what 

they imagined to exist, but which they had not yet succeeded in 

grasping.* 

The Wormed Perwd. Let us follow the historical development of 

the idea. At first, V ~ 1 was a mark,t which was written in algebraic 

* Recall, for example, the words of Leibniz, quoted on p. 880. 
t A “ symbol," some woidd call it. But what is a symbol ? Does a symbol 

491 
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Qxpresoitms where a letter, aa a or miglit appear, and ffitpremions 

ecmtaining it were transformed according to the five Formal Laws ot 

Algebra: 
A ^ -B = JB -f- A, 

A+(S+C)=(J + B)+C, 
AB = BA, 

A(BC)=(A£)C, 

A(B + 0=AB + AC. 

Thns, in particular, 

fit + 6 "v^— 1 + (fit^ + 6^ — 1) 

was replaced at pleasure bj 

(a + a')+(6 + 6')^^- 

We have here the idea which underlies the later definition of ad¬ 

dition for any two complex numbers, o ftV— 1 and a' -f- l/V — 1. 

Furthermore 

a V— 1 and V— 1 a 

were considered as interchangeable. And two of these queer expres¬ 

sions, a -t- 6 V— 1 and o' + bW — 1, were considered as equal (»'.e. 

one could replace the other on any occasion) if and only if o = o' 

and bsxV', 

a 4- by/ —l = a' + 6'V — 1 if a —a' and b = b'. 

In the case, however, of multiplication (i.e. in case two of these 

marks followed each other like two letters which are multiplied to¬ 

gether, as ab, — for, of course, nothing is defined as yet, and so it is 

a question merely of an expression which looks as if it would like to 

be a product if it had a chance) a rule was adopted which went 

beyond the formal laws of algebra; for V— 1V — 1, it was agreed, 

should be replaceable at will by — 1: 

V3iV^ = _l. 

With this understanding, it is possible to write, not merely 

(o -f & V^)(o' -f 6'V^) = oa' -I- (oft' + a'b) -I- 66'V^, 

stand for smnething 9 If so, what Is the thing for which V— 1 stands 9 Or is a 
symbol an object having independent existence f If so, what is the object, 
V=Tt 

Sadb definitions of V'— 1 as the indicated root of a nc^^ve quantity ” 
leave the beginom mymifled unless he has sufficient inidgbt to lUsoom tiiat words 
sn IMag^formed whieh coUectlvely have no meaning. 



t mmxx QCiNTiTiBs m 
atodiff ^ iseatdt Btill furtlier and set 

(« + & V^) (a' + b'V^) = aa' - hb' + («»' + o'b) V^. 

We hat’s hete the forerunner of the definition of mnltiplication. 

Applieationt. This formal acceptance of V— 1 opened the ■way to 

further developments of the greatest importance in the field of al¬ 

gebra and algebraic geometry on the one hand, and on the other, in 

analysis. For it ■was early surmised that every algebraic equation 

has a root in the domain of imaginaries. This granted, algebraic 

geometry mounts up from an insignificant mass of inequalities to a 

well-rounded science, homogeneous and having mathematical content 

Thus a circle, 
ie2-l-y* = a», 

is cut by a straight line. 

Ax -I- By -b (7= 0, 

at most in two points, and the order of multiplicity of straight lines 

which do not meet the circle at all is as great as that of those which 

do — in the domain of reals. But in the domain of imaginaries, a 

straight line cuts the circle in general in just two points, and the ex¬ 

ceptions (tangents and null-lines) form a manifold of lower order. 

In analysis, the elementary transcendental functions (sinw, cosx, 

«*, and their inverses) were well known in the domain of reals. 

What meaning is to be attached to them in the realm of imaginaries ? 

This question presents itself in altogether concrete form when one 

seeks the solution of a linear differential equation with constant co¬ 

efficients, and it is there that it is best treated. We ask the reader, 

therefore, to turn back to Chapter XIY, § 12 and follow the account 

of the he'uristic considerations which finally led to the equation 

= cos <f> -|- V— 1 sin <ft. 

2. Gflometiioal Sepresentations. (a) Poi-nts of a Plane. After 

the formal period had forecast the importance of V— 1 and before 

modem ideas of rigor through definition had made progress, l^re 

was flashed upon the screen of mathematics a geometric picture 

which went far toward uniting the past of the imagination 'with the 

future of the reality. Simultaneously and independently, G-auss, 

Arg^d, and Weasel perceived that a point in the plane, whose oooii* 

diztates are y), can represent the imaginary number 

g=sm + yV-~X. . 
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In word “ repreranfe*’ tlieis is a petite, for ]«>w ous tiMjfe 

does not yjsjb «si8t be represented? And yet the point exists, and 

the pair of numbers (x, y) exists. So it came about that mathemsr 

ticians were easier in their minds concerning imaginaries, now that 

idiey bad this other system of points in a plane to stand in the place 

of &e8e mystical objects.* 

(6) Vectors. A second geometric representation of the number 

« + yV— 1 consists in the rector f drawn from the origin to the 

point (x, y). Let 

a = a + 6*1 8 = c + dt, 

(where from now on we shall replace V— 1 by Euler’s notation for 

it, namely, t) be any two complex J numbers. They are defined as 

equal, 9 = 8, if and only if a = c 

and 6 = a. Their sum, 

a + 8 = (j, 

is defined as the number 

(£ = o *4“ r •+“ (6 -f- d) *. 

Fiq. U7 

The vector which represents IS is constructed geo¬ 

metrically by the law of the parallelogramme of 

forces, and the construction is known as vector addi¬ 

tion. Furthermore Fio. ns 

8 — a = c — a -1- (d — 6)». ' 

/War Ooordiwitee. A complex number, * = * + yi, can be writ 

ten in the polar form; 

* -1- y{ = r (cos 4> + i siu <^). 

•If we may anticipate the hietorical account, it remained only to recognize 
that the eawnce of a nnmheiveystem ia (4) a class of objects, and (H) the postu¬ 
lated laws oonnecUng them. In this sense we may say, if we like, that the pcants 
of the plane are the numben. This thought, although formulated explicitly 
much later, was in the minds of mathematioians as soon as the geometric repre- 
sentsdon hecune known. 

tThe reader should now turn to the chapter on Vector Ajialysis and read the 
first psmgraph. 

fThh term, finopinaries, emjdiastzlng the mystical, gradually gave way to 
Um term complex rummers, amphaslring tire dependence of a + hi on tbs cmA- 
plex of real numbers, (a, b). We still speak, however, of i as the imoffinary 
unit, and of of, wfamw a ia zeakss* pwe imayinarif. 
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Heie^ r is th® absolute value of t: 

1*1 = r = Vss* + y*. 

ift is called the angle of z, and is TOtten: * = are z. 

Mvltijfiioation. The product of two complex numbers, *, = 

*i + yii and *2 = ®2 + yji, is defined as suggested by the formal 
work in § 1: 

*i*j = *1*2 — yi2/j +(x^, + xai)i. 

When *i and Z2 are written in polar form, 

*1 = ri(cos <^i + i sin <^j), = »',(cos + f sint^,), 

the product becomes 

r,rj{co8 cos — sin <^i sin <j>2 + (sin i^i cos + cos sin 

Hence 

*1*1 = ^"1^1 (cos ^1 + ^ +1 sin 1^1 -j- 

We are thus led to the following rule: — To multiply two complex 
quantities, multiply their absolute values and add their angles. 

Geometric Interpretation. The vector which represents the prod¬ 

uct, *i*j, can be constructed geometrically as follows. Consider first 
the triangle whose vertices are at the points 

0,1, *!• Draw a second triangle similar to 

this one, in which the line joining 0 with 

the point *2 corresponds to the side from 0 
to 1. Then the other side which emanates 

from 0 will make an angle <f>i + <i>2 with 
the positive axis of reals.f Denote its 

length by S. From the similarity of the 
triangles, Pio. iis 

- = yS or B = rjr,. 
Ti 1 

Hence the third vertex of the triangle is at the point *,*,. 

The geometric construction emphasizes the important fact that, 

while addition is a process defined in terms of the vectors alone, 

irrespective of the coordinate axes and the unit of length, multipli- 

* r is sometimes called the modulus, and 0, the amplitude or argument. But 
these wq^ have so many other meanings in mathematics that they are not dis- 
tlnoQve for the present purpose. 

f 4he axisuf x is called the axis qf reob, and the axis of y, the axU pun 
imaginaries. 
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cation bears jointiij on the given vectors aikd the hhdice-cif tbe veotot 

whioh represents the number 1. 

JHvition. Division is defined as the inverse of multiplicatioa: 

tes=& if «Sj = Zi or Z}W=sSi. 
*» 

Thus ^ ^ ( cos <^i — <^ + » sin . 
*2 rj I ■' J 

Division is always possible and unique except when the divisor, 

Si, is d, and then division is not defined. 

The Formal Laws. Addition and multiplication obey the five 

Formal Laws of Algebra, § 1. In particular, the Commutative Law 

holds for multiplication as well as for addition: 

*1*2 = *2*1- 

Furthermore, as in the ordinary algebra of real numbers, a product 

vanishes when and only when one of its factors vanishes. 

Definitions. If a + is any complex quantity, then a — M is 

called the conjvugate imaginary, or is said simply to be canjugajte to 

it. A real quantity coincides with its conjugate. 

We furthermore lay down the definition; 

(A) ' e*‘ = cos ^ »sin <f>. 

Thus e*'*’’'* = e* (cos y +1 sin y). 

And again, if j* = ® + yi, then z can also be written as re**. 

By the unit cirde is meant the circle 

*!* + y* = 1. 

EXERCISES 

1. Show that s* s= ** — y* + 3*yt, and find a*. 

% Bxpress _J_ and 
a + di a + bi 

in the reduced form of a complex number, A + Bi. 

$. Brove that the sum of two Conjugate ima^naries Is real,.,an<i‘ 

their, difierence is a paire imaginuy. Prove that, their proda^ct 

ier^. T^en will their quotient be real? 
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4, If Gf{x) is a polynomial with real coefEoients, and if 2 and i are 

eonju^te uoaginaries, prove that 6{z) and G(^ are conjugate 

imaginaries. 

6. If S{x) is any rational function with real coefficients, and if 

2 and 2 are conjugate imaginaries, prove that B (z) and B(z) are 

conjugate imaginaries. 

6. Prove the theorem; if | z | > 1, the point which represents 1/z 
is obtained as follows. Draw the tangents from z to the unit circle. 

The intersection of the chord joining them, with the line from 0 to z, 

represents the conjugate imaginary of 1/z. 

3. Inequalities. If a and © be any two complex numbers, then 

(1) |a+«|g|a| + l®l- 
Por, any side of a triangle is less than the sum of the other two 

sides; cf. Pig. 117, § 2. Hence, for a true triangle, only the sign of 

inequality can hold. But if a and © are collinear, i.e. are parallel 

vectors, the sign of equality may hold. Prom (1) it follows gen¬ 

erally that 

(2) 1A + ^J+ - + A1 ^ |.4il-l-|^2l+ - +14.1- 

1. Prove that 

2. Prove that 

EXERCISES 

i[la| + |hl] ^ lo -h bi\ g |a| 4-16|. 
V2 

4. Powers sad Soots. If 

A= A(co3a+i8ina)= Ae"* 

be any complex number, then 

= A’ (eos2a + isin2a)= A'e*^, 

A^ = A*(oos3a 4- »8ia3«)= A’e“*, 

A" = A* (cos na + i sin na) = A"c^. 

By an n~tk root of A (n, a positive integer) we mean a number 

z =9 re^ such l^t 

(1) ir = A- 
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lieoce r"e^‘ = Ae“*. 

The complex numbers which stand on the two sides of this eqn» 

tion, being equal, must have the same absolute values, and hence 

= A, r = A. 

Their angles, however, need not be equal. It is necessary and 

sujBBcient that they differ from each other by an integral multiple of 

2iror 360”; 
n<ft ^ a, a + 2ir, a + 4ir, 

u — 2'jr, a — 4jr, •••. 

In particular, we may take 0 ^ «< 2ir, and then we find n 

values of ^ leading to distinct points of the plane, namely: 

, a a + 2ir a + 4ir « + 2fcir a+2(n —l)ir 
V — y~, , , •••, , •••, ^^—. 

n n n n n 

All other values of lead to one of these n points. 

Hence it appears that the n roots of equation (1) are given by 

the formula: 
1 <«+»!>)< 

(2) 2* = A=^e « , & = 0, 

Discussion. Consider first the roots of unity: 

*" = 1. 

Here, A = 1, a = 0, and the roots lie on the unit circle at the 

points 

1, e" , e“ , e " , 

thus forming the vertices of a regular inscribed polygon of n sides. 

Tta. iX 

It is now easy to interpret geometrically the general case. Draw 

first the circle r = A*, and mark on it a point, P, such that the 

tftdiUB drawn to it makes an angle a/n with the positive axis of 

reals. Inscribe a regular polygon of n sides with one vertex at P. 
^mn the vertices of this polygon represent the » roots of A. 
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EXEROISE8 

^ Detenuine all the roots of the equation 

**=*2 + 4i 

anld plot them, showing the corresponding pentagon. 

8, Find the mbe roots of — 1 and plot them, showitg the con 

responding equilateral triangle. Similarly for the fourth, fifth, and 
sixth roots of — 1. 

3. Write the polynomial 
X* + a* 

(Q as the product of its linear factors; (it) as the product of its 
real quadratic factors. 

4. The same for afi + a*. 

B. The sum of the n n-th roots of unity is zero. Give both an 
algebraic and a geometric proof. 

6. Show that, if <i) is an m-th root of unity, all the integral powers 

of a are also roots of unity j and that, if <i> be properly chosen, the 
n roots can be written; 

<0, <u*, <u*, w"-*, 0>" =: 1. 
Ini 

One such choice for <0 is e " . 

7. Solve the quadratic equation 

z’ = l4-» 

by writing ** in the form — y* + 2iryt and then equating reals 

and pure imaginaries on the two sides of the equation. Plot the 

Tcotors, drawn from 0, which represent the roots, and show how they 
are related to the vector which represents 1 + i. 

Generalize for 
«’ = « + bi. 

8. If n complanar forces, acting at a point, are represented by the 

complex numbers Zi, Zt, *'*, s,, show that a necessary and sufBcient 

condition that these forces be in equilibrium is: 

*1 + *s + ••• + *,= 0. 

5. Tli« Fnnction e*. We have already defined e** and e*, where 

* as * + yi, in S 1: 

(1) « «*+*« 5-c e* (cos y -1- i sin y). 
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Bat what justification, what r^m, is there for this definition b& 
yond the mere formal work of § 1 ? 

The same question presented itself in elementary al^bia when 
we passed from a” = a - a.a (n times), where n is a natural 
number, to the new and extended meaning of a”, where » is a frac¬ 
tion or a negative rational number, and finally to the completed 
definition of a', where x is any real number, integral, fractional, or 
incommensurable. It was the/ormal law 

(2) a«a" = a"+" 

that guided us then, and it is that law now which expresses the 
essential property of the exponential function. This law is known 
as the Addition Theorem for the exponential function and can be 
expressed in general terms as follows: 

(3) f{<» + y)=f(x)f(y), 

where x and y are any two numbers — real, in the case of elementary 
algebra, complex for our proposed extension (1). 

Does our new function (1) measure up to this standard? Is it 
true that 
(4) = e*'e'> ? 

Ask the definition. That is the only source of an answer. 

e^e*> = «*■ (cos yi + i sin yj) e'> (cos 3/2 -f-1 sin y^) 

= «*>+*« (cos yi + yt + i sin y, -|- yj). 

But this last expression is precisely and the new function has 
stood the test. 

Moreover, just as e* is uniquely defined and is continuous for all 
real values of x, so e" is single-valued and continuous for all complex 
values of z. 

But is this all that we could ask for ? Two further properties of 
the real function e* are: 

S"*"’ (6) c' = l+a + |-|-.... 

That s' also has these properties, will be shown in §§ 12 and 16. 
Over and above that which could be expected we find, however, an 

entirely new property: — The function e' is periodic in the imaginary 

domain: e*. 

Ji has the imaginaryp/eriod 2*i. ^ 
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EXERCISES 

1. SLOW that = e^ = i. 

2. Compate (Le value of e*"” in tLe form o + M» determining a 
and "b to four places of decimals. 

3. SLowtibat 

16*1 = 6* and Ie*‘l = l, 

where z = a: and <f> is real. 

6. The Function log z. In the domain of reals the functions e* 
and log® are inverses, the one of the other: 

= log a: if e” = x. 

In the domain of complex quantities we will adopt the same defini* 
tion and say: 

w = log z if 6” = z. 

Let- w = u + v{, z = r(cos <^ +1 sin ^), 

Then log z is given by the equation: 

g»+.. _ j-^cos ^ -f-»' sin <l>). 

Since the complex number which stands on the left of this equa¬ 

tion is the same as the complex number on the right, it follows 

(t) that their absolute values must be equal; (it) that their angles 

must be equal, save as to a multiple of 2 n-: 

(i) e* = r, « = logr; 

(if) V = ^ -1- 2 fcir. 
Hence 
(1) logz = logr-l-<^t, 

where ^ may be any one of the determinations of the angle of z. 

Thus it appears that, while the real function log as was aingh- 

valued and defined for positive values of x only, the extended func¬ 

tion is defined for all complex values of the argument, except 0, and 

is infinUely muUir>le~valued. 

In particular, a negative number, — a, now has a logarithm: 

log(— a)= logo -f (2* + l)irt. 

Thus 1ok(—or —iri, or Sttz, etc. 

MoreoYm, a positive number has an infinite nambar of logarithina 
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Thus log 1=0, ±2wi, ±4ri,—. 

We note that 

€'»*■* =sA, log e® = B + 2hri, 

where A is any complex number ^ 0, and B is wholly arbitrary. 

Formula (1) is sometimes written in the Cartesian form: 

(2) log2 = ^log(a!* + 3^) + ttan-*J^. 
X 

But this is wrong, since not every value of tan->y/a5 is admissible 

Thus, for example, this formula would mai:e 

log (— 1 — t) = i log 2 + ^ t + ftvt, 

where k is any integer, whereas in fact k can 

here take on only odd values. For, one determi¬ 

nation is 
Fio. U1 

log(— 1 — i)= ^log2 -t- fvi, 

and the others differ from it by multiples, not of wi, but of 2iri. 

No confusion can arise if ^e value of <f> in (1) is read off from 

the figure. There, ^ is the angle, measured in radians, which be¬ 

longs to z—any value of this angle. 

The Functional Relalions: 

(3) log 2i -f- log 2j = log (Zi*,); 

(4) log*'* = nlogz. 

The first equation holds for any two complex numbers 21,227 both 

different from 0, where any two of the three logarithms may be 

chosen arbitrarily among their possible values, and the third then 

suitably determined. The second relation depends on the extension 

qf the definition of the function z"; cf. infra. 

The Otmtraliitd Power, A*. Let A and B be any two complex 

numbOTs, provided A^^kO. Then we define 

(6) A® = 

where Ic^ A has any one of its possible values. Thus 

y. It would now appear as if there wm:e a confiiot with the former 
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definitioa of e*, since now 

We cut the knot, however, by restricting the notation «* to its mean¬ 

ing as given by § S, (1). 
The Functional Belation (4) is seen to be valid, where the logarithm 

on the right may be chosen at pleasure, and then both *• and log *“ 

are in general uniquely determined. 

EXERCISES 

1. Find all the values of log 10. 
^ns. 2.30269 -1- 2 tori, fc = 0, ± 1, ± 2, 

2. Find all the values of log (2 — 31). 
Am- 1.2826 - 0.9828* + 2 kvi. 

3. Find all the values of log(— 5 — 6*). 

4. Determine all the values of jr’'. 

B. Compute the values of (1 -f i)‘. 
Ana. (636.6)‘(0.4288 -b0.1648i), fc = 0, ± 1, ± 2, 

6. Show that 
A^A‘^=A‘‘*^, Ai^O, 

where any one of the three quantities A”, may be chosen 
arbitrarily among its possible values, but in general neither of the 

remaining two can be so chosen. 
State precisely the latitude of choice in the relation 

7. The Fnnotioni sin*, cos*, tan*, etc. From the equation of 

definition, § 1: 

e** = cos ^ -1- * sin 

where ^ is real, follows that 

= cos <!> ~ i sin <f>. 

Hence 

(2) 
g** — e-*‘ 

2i ’ 
COB <j> = 

gU q- e- 

Now that «* is defined for all complex values of the argument, the 

right-hand sides of these equations have a meaning when 4> is im¬ 
plex. What more natural than to take these extensions as the defi- 
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nitioa of the fonctioaa ainz, cos a for complex Talaea the 

argument, and see what happens? 

(3) sinz oosz 
e** + e~*» 

2 

The essential question is: What are the most important amlyti- 

eol properties of the trigonometric functions, sinx, cosx? Again, 

the answer is flashed back to us in the form of the Addition Theo¬ 

rem for these functions: 

f Bin(zi+ *a) = sinzicoszs + coszjisinzj, 

\ cos(Zi+ z,) = cosziCOBZj — sinzisinzj, 

Unless the extended functions satisfy these relations, equations (3) 

are but a hollow nut. And so it is with curiosity that we compute 

the right-hand side of the first of these equations from the deflni* 

tion (3). On reducing the result by means of (4), § 6, we see that 

the equation is, indeed, true- And likewise for the second equation. 

Moreover, the extended functions are single-valued and continuous 

for all values of the complex variable, z. 

Is this all that we could desire ? The real functions sin x, cos x 

have derivatives, given by the familiar formulas, and the functions 

satisfy a linear differential equation of the second order, which in 

taim dominates these functions completely. And, finally, there are 

the power series expansions. Will these properties persist? The 

answer is most satisfactory. We shall show later that 

(6) 
dsinz 

dz 
= cosz. 

dCOBZ 

dz 
sinz; 

thus the functions sin z, cos z are solutions of the linear differen¬ 

tial equation of the second order : 

(6) 
and, finally, that 

(7) 

dz*"^ 
«i = 0; 

sin z = z — 

cos z = 1 — 

3!^6J 

— 4- _ 

•••» 

The otiier trigonometric functions are defined in terms of sinz, 

OOBz: 

(8) sih z 1 e*' — c“‘' - -> 
coez + 

tanz 
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oota=—seOi! = —csc* = -4— 
' * tan* 008* sm* 

In the domain of reals there is no relation between the trigono¬ 

metric functions on the one hand, and the exponential function on 
the other. In the domain of imaginaries, we have here before us 

onlj a single class of functions. 

EXERCISES 

1. Compute sin (1 -|- t). 

S. Express e* in terms of tan*. 

Am. 1.299-f-0.635». 

1 — t tan^ 

Am. e* --. 

l-l-itan| 

8. The Inverse Trigonometrio Function*, sin~‘*, tan >*, etc. The 

anti-sine is defined by the equations: 

(1) w = sin-‘ * if sin w = *. 

For the determination of w we have, then : 

Hence 
e2*«> _ 21* — 1 = 0, 

t 

e- = i* ± w = Y log ('* ± VI - *’). 

The final result can be written in a variety of ways (c/. Peirce’s 

Tables, p. 79, No. 643). Since 

- log(i* ± VI - 
iz ± VI — P 

_- - — = ± Vl —*’ — »*, 
iz ± Vl — ** 

we may write: _ 
(2) sin-' * = i log[Vl — s* - «], 

where it is understood that both values of the radical must be 

observed. 
The anti-cosine and the anti-tangent are defined and computed m 

a similar fashion: 
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to as 008~‘S 008 to as », 
C0S~1 g = flog (2 + t VI — i 

to = taa** * if 

tan~i * = ^ log • 
2 t — g 

tan to — g. 

As was to be expected, tbe inverse trigonometric functions and 

the logarithm form, in the complex domain, but a single class of 

functions. 

EXERCISES 

C&mpute the following, determining dU values: 

1.'8in~'2. 2. cos~*6. S. tan~'(l4-0- 

4. Show that the two formulas 49 and 50 given in Peirce’s 

Tables for ^ 

J a + ba? 

aie identical in the domain of imaginaries. 

9. The HypethoUo Pnnctions. Certain functions analogous to 

the trigonometric functions, called the hyperbolic functions, have 

recently come into general use. They go back, however, to Eiccati 

(1757) and are defined as follows ; 

sinh z s= ^ ~ ^ ; 
2 ’ 

cosh * s= ^ ; 

tanha: = «i5^, 
cosh 2! 

etc. (read “hyperbolic sine of etc.). An abbreviated notation 

for sinhtr, coshx, tanhir, is sha;, chx, tha;. The graphs of these 

functions are shown in Fig. 122.* The functions satisfy the follow¬ 

ing relations, shx and thx being odd functions, chx an even 

function: 

8h(—*) = —sh*, ch(—®)= oh*, th(—*) = —thas. 

gratib of the tonetion oh x is identical with the figure of the oatenmy, 
Cf- Chap. XIV, S 8. 





pean from a gla]M» at its giapb, obtained as Qsnal in the case of an 

inTerse function by rotating the graph of the direct function about 

the bisector of the angle made by the positive coordinate ^es; 

ch”> X = log(* ± Vas* — 1), X ^ 1. 

The upper sign corresponds to positive values of ch~‘ x. 

Also: th"i X = log — 1 < X < 1. 

The derivatives have the values: 

d sh~^ X 1 

d* yr+^’ 
d ch~> X _ 1 

d th~^ X _ 1 

dx 1 — x^ 

We thus obtain a close analogy between certain formulas of 

integration; 

r—= 8in-i5, = sh-i®, 
J Va* — a^ <* */Va* + x® “ 

• f-^ = itan-»5, f-gg- = lth-i5. 
Ja»+x* a o a o 

A collection of formulas relating to the hyperbolic functions Trill 

be found in Peirce’s Tables, pp. 81-83, and tables for shx and chx 

are given there on pp. 119-123. 

JRelation to the Equilateral Hyperbola. The formula: 

/vr- a^d» = JxVl — X* +|sin“‘x. 

expresses the area OQPA under a circle in terms of the function 

Bin~i X and enables ns, on subtracting the area of the triangle OQP 

from each side of the equation, to interpret sin~i x as twice the area 

of tib« circular sector OPA, 

Ito. 1S3 
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There is a similar interpretation for ah”'» with, reference to the 
equilateral hyperbola 

m 

+3!* die = ^ icVl + ie* + ^ log(a! + Vl + iB*) 

= ^iB Vl + ** + ^Bh"‘a5. 

Thup we see that sh”**: is represented by twice the area of the 

hyperbolic sector, OPA. 

To the formulas for the circle: 

iB* + y2 = 1, 

X = sin u, y r= cos u, 

correspond the following formulas for the hyperbola: 

y‘-ic‘ = l, 

05 = sh tt, y = ch tt, 

the parameter u being represented geometrically in each ease by 

twice the area of one of the above sectors. 

The analogy of the hyperbolic functions to the trigonometric 

functions is but another phase of the fact that in the domain of 

complex quantities the trigonometric and the exponential functions 

and their inverse functions, the anti-trigonometric functions and the 

logarithms, are closely related. Compare the formulas which de- 

^e sh X and ch x with those of § 7 which express sin x and cos x in 

terms of e*. 

7Tie Gudermannian, Let ^ be defined as a function of x by the 

relation: 

8hx = tan<#(, ^ = tan“>shx, — 

Then ^ is called the Gudermannian of x and is denoted as follows :* 

4, = gd®. 
We have: ' 

sh X a fcan oh X = sec 0, th X a sin ^ 

etchX a cot sechxacos^, cothxaosc^; 

and since «• = ch x -J- sh x, 

e. = tan(l + |) *.logtan(|-b0 

« caUsd the hyperbolie amplitude end denoted hy amhx. 
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EXERCISES 

m 

i. Show that 

smiefat'shis, oosa^ssehas. 

S. Show that 

Bin(a9 + yi) = sina; oh +1 cos a; shy. 

10, Limits and Oontianity. A complex variable, as 

“ “i + *<* + •'• + •*,, 

where the v^’a are complex mimbers, is said to approach a limit, if 

the points of the complex plane which represent it, approach a 

limiting point. 

' An infinite series of complex terms, 

+'*4 + ••• 

is said to be convergent if the sum of its first n terms, s„ approaches 

a limit. 

In order that a complex variable, Z s= X-t Ti, approach a 

limit, it is obviously necessary and sufficient that the real part, X, 

by itself approach a limit, and that, at the same time, the coefficient 

T of the pore imagioary part, by itself, approach a limit 

Let tS be any two-dimensional region of the complex s-plane, and 

let a complex number, v>, be assigned by any rule whatever to each 

point, 2, of S, Then to is said to be a /unction of z, and may be 

written in the form 
to »/(*). 

The function f(z) is said to be oontmuous at a point z, of 5 if/(s) 

approaches a limit when z approaches Zg ^ ^7 manner whatever, 

and if the value of this limit is /(z,): 

lim/(z)=/(z,). 

The foregoing definitions may be formulated as follows. The 

function /(z) approaches a limit. A, when z approaches z^,, if, to any 

arbrtnuy positive real number, c, there corresponds a positive real 

number 8 such that 
l/(*)-^l<., 

whfflie z has .any value for which 

0<|s —Sbj<l. - - ' 
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By sayiBg that «is arbitrary we mean that it may be chosen a^n 

and again, and each time, as small as we please, but real and positive. 

The function/(*) is continuotis at iSj if 

l/(*)-/(2o)l<e, |*-Zo|<8. 
A function of a complex variable may be defined only along a 

curve of the complex z-plane, or even merely in a set of discrete 

points, like 

EXERCISE 

Show that, if jd is any complex number such that |.il| < 1, the 

formula of Elementary Algebra: 

—L-=::1 + A + A^+- 

1 — A 1 — A 

still holds, and thus the infinite series 

1 + A + A^ A- 

converges to the value 1/(1 — A). 

11. The Derivative. The definition of a derivative given at the 

beginning of the Calculus holds here unmodified. Let be any 

point of S, and let Mq be the corresponding value of the function: 

Wo =/(2o)- 
Give to 2 an increment, A2, merely such that Zo + Az is a point of 

8, and denote the value of the function by tUg + Aw: 

Wo 4- Aw =/(ro + A*). 

Form the difference-quotient: 

Aw__ f(z„ + 8z) -/(zq). 

Az Az 

If this variable approaches a limit when Az approaches 0, then 

f(je), or w, is said to have a derivative at z = Zo, and we write: 

.Aw r».. Az) — /(go) 
lim- 

Az 
sD.w or 

Az 

The five General Theorems, Theorems I-V, Introduction to the 

Cdletdus, pp. 22-36, hold as in the case of reals: 

L -D.Ccw) = cD.w, 

IL D,(v>i -f wj) = Z>,wi -t- D.wj, 

etc. 
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tlw 4iSex«ntiad ia defined in tiro same maaoer; 

dtOsa: D.tO'AS, 

and it is shown that 
dw S3 D,w dz, 

even when both z and to depend on a third complex variable, t. 

The special formulas: 

dc 3s 0, d«" S3 na*~* da, n, a natural number, 

are also established as in the real case of reals. 

It follows at once, as in the case of reals, that all polynomials 

have derivatlTes. Thus 

^(oz* + bz + c) = 2oz + b, 
dz 

where the coefficients a, b, c, are any complex constants. 

Also, any rational function, 

Jt{z) = 

has a derivative for any value of z for which it is defined {i.e. 

0(t) ^ 0). In the case of transcendental functions, however, the 

proof of the existence of a derivative is indirect, and will be taken 

up in the next paragraph. 

12. The CauehyJliuiuuin Differmtial Xquations. A very simple 

function of a complex variable may fail to have a derivative. Con¬ 

sider, for example, 
to Bsx — yi. 

This is a function of z, for, when z is given, to is determined; and 

moreover the function is obviously continuous. Give to z a value 

tf and fonh tffie difference-quotient: 

tuomxe-iyo, +Ato= (a\,-|-A*)—i(yo+Ay), 

Ato^ Aar — I'Ay 

Az Aa; + t Ay 

f^irs|, let Az approach the limit O, jpasaing throngh jwal mJuosi 
Xbea ^^0 and 

A«y - 

A*“ 
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Kext, let Ae approach 0, passing through values that are pure 

ima|;inaries. Then Ax = 0 and 

Ato _ _ j 

Az 

Here, Atc/Az has the limit — 1. Thus no limit exists when Az 

approaches 0, for the points of the complex plane which represent 

the variable Aw/Az do not lie near some single iixed point when Az 

lies near 0. 

NeeeBaary Conditions. It is easy to obtain a pair of necessary 

conditions * that the function 

w=f(z) 

have a derivative. Let w = u + vi, and let Az approach 0, pass¬ 

ing through real values; Ay = 0, Az = Ax. Then 

and hence 

Aw 
lim — 
Aoo Az 

= lim (■ Am .a V ^ i 
Ax Ax 

du , .cv 
= ^ + *—, 

cx cx 

du . .dv 
D to = — -b t — • 

cx cx 

Next, let Az approach 0, passing through pure imaginary values: 

Ax 3= 0, Az =s iAt/. Then 

Aw /1A,m , A,v\ 1 du , dv dv .du 

/^s*oAz arM\t Ay AyJ i cy dy dy dy 

Hence 
n dv .du 

dy dy 

On equating these two values of D,w and observing that the real 

parts of the two expressions must be equal by themselves, we see 

that 
, du dv du dv 

- = a7 Fy — ^- dx cx 

(AO 

The result may also be written in the form of a single equation 

in ooxDpietx quantities: 
^ _ldw 

h i dy 

Ai» neoessary conditions we set out to obtain. 

* The student wtU do well to turn back to Uio Introduction to On Calculus, 
• 1, and Stake son that he has clearly in mind what is meant by a necessary, 

and What iiiMaat Dgr asHjBeient condition. 
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ChnditioM. If w« assuiae tiukt the real fonotions 

H BE « («, y) and V e;«s v(ae, y) are oontmuous, together with ^eir 

first partial derivatives, then the equations (^) form, conversely, a 

n^fficient amdition, that w = u + vi have a derivative. For, 

^u = pAx+^Ay + (iiia + iiAy, 
ex cy 

Aw = ^ A* +1? Ay + ii A* + C; Ay, 
cx ey 

where the ^’s are all infinitesimals, \x and Ay being the principal 

infinitesimals; Chap. V, § 3. Form the quotient. 

Ato _ A?4 4- i Ae 

Az + i Ay 

Since equations (A) are true, it is clear that 

Hence 
Aw ru , .do , , ..tsAie , . .).l^A»/ 

Now |A2|S|Az| and [Ay|g|Az{, and the parentheses, 

+ ifi snd {g + til, ere infinitesimal. Hence ^wjAz ap¬ 

proaches a limit when Az approaches 0, and thus the function w is 

seen to possess a derivative. Moreover, the value of the derivative 

is given by the formula: 
/»\ ri I (B) = 

ox dx 

The equations (A) are known as the Cauchy-Biemann Differential 

EquaiBons. 

A fiinction w of the complex variable z which possesses a continu¬ 

ous derivative is called an analytic function. Unlike the situation 

in the case of reals, it is only the analytic functions of a complex 

variable ^niiich have important properties. 

Bmmple. The function e* is analytic. Here, 

use*oosy, vsse*8iny. 

du dv . . — = e*c08y, — = e*siny, - 

^a.-e'siny, ??«e»oosy, 
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aad th0 Gauchy-Biemami Differential Equations (^) are ra>tisfied. 

Thus e* lias a derivative, and it is given by the formula; 

Hence 

(1) 

. Bv 
—+ t— sBfi*cosy-f»e*Biny = «». 
cx Ox 

d2 

EXERCISES 

1. Show that the function sinz has a derivative given by the 

formula: 
d sinz 

dz 
-=C08Z. 

2. Show similarly that 

dcos z = — sm z; 
dtanz 

r 8ec*z; 
dcotz 

dz 
= — csc^ z. 

dz ’ dz 

3, Prove that the Cauchy-Biemann Differential Equations, trans¬ 

formed to polar coordinates, are as follows: 

du_ldv 1^_ 

dr rBB^ tBB Br 

4. Show that the function 

him a derivative, and that 

5. Prove that 

d8in-‘z 1 

to = log z 

d log z _ 1. 

dz z 

dz VT^ 

d tan~* z 

dz 1-l-z* 

13. Laplaee’s Equation, A« = 0. If w = u q- w is an analytic 

fnnKtinTi of the Complex variable z = x + yi, then the real part, w, 

of the function satisfies Laplace’s Equation: 

“ ar» ^ ' 

For, « and v satisfy the Cauchy-Biemann Differential Equatioos 
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{A), f IS. On diSeteatiatmg* the fint of these to n, 

^e second -wi^ respect to jr, and adding, eqn&t»Na t(l) results. 

CkniTeisely, let tc be a solution of Laplace’s Equation, (1), through¬ 

out a region, 8, which, for simplicity, we assume simply conneoted. 

Form the integral 

This integral is of the form 

I Pdx -1- Qdy. 

U.U 

Moreover, the condition {rf. Ohap. XI, § 7) 

dy dx 

here reduces to 
d*u _ 

dy‘*~ dcfi' 

and thus is fulfilled because of (1). Hence the integral is inde- 

pendmit of the path of integration and thus represents a function 

V, jingle-valued in 8~ 

Furthermore, the function v thus defined has partial derivatives 

given by the formulas: 

^_^ dv ^du 

dx dy’ dy dx 

But these are precisely the Cauchy-Biemann Differential Equa¬ 

tions (A), § 12. Hence u is the real part of an amdytic function 

wssu-f-ta of the complex variable gBzx + yi. The functions u 

and V are called oonjugote; cf. Chap. XI, § 17. 

Thus the theory of Laplace’s Equation in two dimensions is coex¬ 

tensive with the theory of analytic functions of a complex variable. 

14.^ Osaicliy’s Intq^ Theorem. By the integral of a continuous 

funci^ of a complex variable along a curve O is meant the limit of 

thesdm: * 

• It con he Shown that any two functions, u and «, which an oontlnumw, 
together with their first partial dstivadvea, and satisfy (d), {IS, poness oon- 
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(1) Jf{z)dz, 

where = z^+i — . Since 

/(**) = («* + »«ii)(Aa;* + iAy„) 
» A®* - e* Ay* +1 (v* Aa;* + u* Ay*), 

it follows that 

(2) J*f(z)dz= J*udx —vdy + iJ'vdx + udy. 

Let M be the largest value which j f(z) | takes on along C. Since 

by S3, (2), 

12)/(**) ^**1 g 2) ■ i^*i» 

and since |Aa!*| = Z*, the length of the chord joining r* with **+i, it 

follows that the last sum is not greater than 

Af(Zo + Zj + •• • + Z,_i). 

The parenthesis, being the length of a broken line inscribed in C, 

approaches as its limit the length, Z, of C. Hence we infer that 

1/ 
f(z)dz g Ml. 

Gaucht’s IiTTEaBAi. Theobeu. Let f{z) be analytic throughout the 

interior of a region S and contiguous on the boundary, C. Then 

J'f(z)dz-0, 

where the integral ie extended in the poeitive tense over the entire boun¬ 

dary, C. 

'Fox, each of the line integrals on the right of (2) is of the form 

JPda!+ Qdy, 

and since /(z) is analytic, u and v satisfy 

the Cauchy-Biemann Differential Equations 

is fulfilled for each int^pral, and so eadr vanishes; Ghap. XI, ( 7. 
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15. Integral Formnla. From the theorem of $ 14 
Cauohy deduced the foUowing formula: " 

(1) /(») ,_L fim, 
2»» f t — z 

where z is any interior point of S, and the integral is extended over 

the entire boundary C in the positive sense. 

Draw a small circle, F, about z and remove tbia 

circle from S. In the region S' thus obtained, 

JML, 
t — z 

regarded as a function of t, z being constant, sativ 

fies the conditions of the theorem of § 14. Hence rta. las 

(2) jmAt M+ rm^. 
-z ^ t- 

0. 

The second integral is extended in the clockwise sense, and can 

be evaluated as follows. Let 

t-s = pe*‘, 

where 1 is a point of F, and p is the radius. Then 

and 
dt = ipe**dB 

=- ij' ft f[z + P^d$. 

How let p approach the limit 0. The last integral approaches 

/ 
/(*)d0-2v/(s); 

for the int^^rand is continuous in the two independent variables, 

p and 6. The same is, therefore, true of its real and its pure 

imaginary part, and so the theorem of Chap. XIX, f 1 can be applied 

to eaeh of ^ose. 

Tho first term in (2) does not depend on p. Hence we have; 

2,f/(s)-0, 

and ^UB (1) is establish^ 
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DifftrtnHatton under the Sign of Integration. An integial of tho 
above form: 

where/(<) ia oontinuous along (7, can be differentiated according to 
Leibniz’s Rule. For, 

Hence 

♦C + A.)- 

<l>(z + Az)-^(z) 
Az 

and 

= r_fi fiOdt 

«»(z + Az)-<<>(z) rmdt 

Sz){t-zY 

, __ f__ 
^ j/ (<-*)* ^ 

This last integral remains finite as Az approaches 0. The right- 

hand side of the equation, therefore, approaches 0, and the theorem 
is proved: 

(3) ^’(z) = f ■ ^ («_Z)2 

From (3) we infer the following formula for /'(*): 

(4) 
2niJ (t~zy 

The process can be repeated indefinitely, and thus we have i 

(6) /<•)(*)r /(o ^ - 

EXERCISE 

If 5 is a circle with centre z a a and radius r, and if AT is an 

upper limit for j/(t) j on the circumference, 0: 

show that 



m cjojcGim 

Henoe l/<«)f ^ ^ 
Show farther that 

16. Ta^r’e Theorem. Let /(t) be analytic trithin a r^on S 
and oontinuoOB mi the boundary, C. Let a be any interior point of 
8 and let r be the radius of the largest circle about a which oon- 
tains no point of C in its interior. Then/(z) can be developed by 
Taylor’s Theorem throughout the interior of this circle: 

r. (1) /(a) =/(<») +r(a)(z-a) + ^(z - a)* + |z - ol< 

The proof is brief. Let t be any point of C, and let z be an in¬ 
terior point of the circle. Then 

\z-a\<r, |f-a|^r. 

Write 

1 1 11 
t — s t- (z — o) t —a 

t — a 

This last fraction is of the form 1 /(I — ^4), 
where | ^ | < 1. The formula of Elementary 
Algebra for the sum in a geometric progres¬ 

sion holds here, $ 10, Exercise, and thus we have: 

rut. 137 

1 _ 1 ■ . ■■■ 
t — z t — a (t — a)* (t — o)* (f — z)(f — a)" ‘ 

It remains merely to multiply this equation through by f{t)f2wi, 
to integrate over C, and to interpret the terms: 

t — z 

The term on the left is equid to/(z) by S 15, (1), and the n terms 
of the sum on the right are precisely the first n terms of the Taylor’s 
Sezie^ by (15, (1), (4), and (6). Since 

yVg-gl* r m dt 1 f(t-a)’‘f(t)dt 
^ ^ (f - a)*+> (t - z)(t - o)» 

(z - a)’*/(t) dt 
(<-*)(<-o)- 

< i (* z — a 
t — a It-si 

d$ 

tnd V a positive constant < 1: since furthermore 
}< —o| r 

positive constant; and sinoe finally | /(t) | ^ M, 
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a positiTe eonstaat, the last 

not greater than 
term on the right is in absolute yalae 

'irhere I denotes the total length of C. 

As n increases without limit, this quantity approaches 0. Hence 

the seriea (1) couTerges and represents the function f{z). 

If, in particular, f(z) is analytic over the entire complex plane, the 

series (1) converges for all values of z and represents the function. 

Thus the developments 

«* = l + 2 + 
2! 

+ 

cosz = l — — + — — 
2! 4! 

are seen to hold for all values of z, real or complex. 

Taylor’s Theorem throws light on the extent of the interval of 

convergence of an expansion of a real function into a power series. 

Take, for example, the series which represents the function 

l/(l + *»): 

= + .... 

This function is continuous, together with all its derivatives, for all 

real values of x, and can be expanded about any real point, x = a. 

Why should the above series converge in just the interval 

The question is answered by considering the function 

(3) 
1 

l+z» 

in the complex plane. This function has singular points at z = i, 

— {. Hence the largest circle which can be drawn about the origin 

(* = 0) and which contains in its interior only points in which the 

function is analytic, is the unit circle, and this circle cuts off from 

the a!4xis the interval in question. 

It should be added for completeness that a power series in z 

whi^ converges for some values of the argument distinct from 0 

a.nd diverges fbr others, always converges throughout the inteiiw 
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of ft eertftla drde irliose oeotie is ftt ir 0, and diirarges outnde 
oixcle. It tepresent^, or defines, an analytic fonotiou witiiin its cir¬ 
cle of oonvergenoe. 

Finally, Taylor’s expansion is unique; no second expansion 
into a power series is possible, whose coefficients are different from 
those of the Taylor’s series. 

The proof of Taylor’s Theorem was giren by Cauchy in 1831. 

EXERCISES 

1. Show that the function (2) can be expanded about the point 

* = 1: 

= Co-I-c,(a; —1)+Cj(os — 1)* + •••, 

Determine the first three coefficients, and prove that the interval 

of convergence of the series is 

1 — V2 < as < 1 -f V2. 

8. Show that the function 

1 
1 +• a!-|- 

can be developed into a power series in ce, convergent throughout 

the interval — 1 < a; < 1, and determine the first three coefficients. 

S. Show that tan z can be developed into a power series in z, con¬ 

vergent in the interval 

4. Show that the function 

l + a!« 
6 — 

can be developed about the point x = 2, and determine the interval 
of omivergence of the power series. 

5. Show that any rational function, 

«{*) 
(?(*)’ 

can be developed by Taylor’s Theorem alxnit any point, a, at which 
&(a) eft 0, and that tiie drcle of eonvergenee will reach out to tits 
neanM^ root cf G(»), 
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17. Ksltiplo-Taliied Fnsotioat. Wlien /(*) is multiple-valiud, it 

is possible in the cases ■which arise in practice to separate out a 

brxtnch ■which is single-valued and analytic throughout a certain re¬ 
gion. Consider, for example, 

(1) 1 

Vl — 2/U! 

Here, the radicand vanishes when 

1 — 2 fix 4- 2’ = 0, z — fi± iVl — fi*. 

If n is real, these two points lie on the ■unit circle. Within this 

circle, the radicand is never 0, and the two values of the function 

can t)e grouped so as to give two functions, each analytic ■within this 

circle. Let ffz) be that one of these functions for which /(0)™1. 

Then /(*) can be developed by Taylor’s Theorem about the point 

z = a = 0, and we have: 

(2) f(z)=—=^===Po(ji) + PMz + P,(ji)z^+ .... 
Vl —2/12 4-2^ 

The coefficients, P^Qi), can be shown to be the Zonal Harmonics. 

EXERCISES 

1. Compute the first three coefficients of the expansion (2) by 

differentiation, and compare- the results ■with the formulas of Chap. 

XVI, § 6. 

2. Show that the function 

log cos X 

nan be developed into a Maclaurin’s series, and determine the interval 

of convergence. 

18. Conformal Xapping. We have pointed out in Chap. VI, 

S 8, the nature of a conformal map of one surface on another. If a 

region S of the (z, y)-plane is mapped in a one-to-one manner on a 

region S of the (u, v)-plane by the functions 

tt=/(z,y), v = <l>{x,y), 

assumed continuous together with their first partial deri^vatives, and 

if the angle under which any two curves in S intersect, is preserved 

by their images in S, theli a small triangle in S will go over into a 

small curvilinear triangle having respectively the same angles, and 

thus any small figure in S will go over into a figure in S which will 
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i^apeax similar, tiumgh drawn to a different scale and tnnwd throogh 

on angle. 

Let to = /(») 

be a function which is analytio throughout a region 8 of the complex 

pl^ne, and let 

uz 

It can be shown that the region about Sq will be mapped in a one-to- 

tme raanner on the region about tOo in the to-plane. Moreover, i&ts 

map it conformal. 

To prove this last statement, consider an arbitrary curve, O', ema¬ 

nating from to and making an angle with the positive axis of reals. 

Its image, C, will be a curve in the to-plane emanating from Wg and 

mairing with the positive axis of reals an angle which we will call tj/. 

*We will show that 

(1) ^ = <^> + y> 

where y is the same for all curves C. 

Let 2' = 2o + dz be a second point on.O near to, and let to' = tOo + dio 

be its image on C'. Since 

lim^=(A«')^=Aer‘=ifeO, 

we haTQ: 

Ato=(Aer< + {)Az, 
At 

where { is a (complex) infinitesimal. 

We know from $ 2 that the angle of the product of two complex 

quantitieB is the sum of the angles of the factors. Hence 

arc Aw = arc (Aer* + £) + Az. 

As Az approaches 0, the terms on the right approach respectively 

y and and the term on the left approaches Thus the laruth of 

(1) is established. 

If, now, Cl and O3 are two curves in the z-plane emanating from z s Zg 

and making angles ^i and ^ with the axis of reals; and if their images, 

Cl and C't, make angles and ^3 with 

the axis of reals in the w-plane, then 

and hmioe 

fta. m 
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ie. th0 angle at «V) from Cj to is the same as the angle at at from 
Oito Of 

The student will find a number of carefully drawn plates repre¬ 
senting such maps in Clerk Maxwell’s Electricity and Magnetism, 
Tol. I, end; and also in Holzmfiller’s Isogonale Vervoandtschaflen. 

19. Flow of Heat or Electricity. Irrotational Fluid Hotion. The 
two.dimensional flow of these substances has already been men¬ 
tioned in Chap. XI, §§ 16, 19. It is Laplace’s Equation and the 
Cauchy-Hiemann Differential Equations which form the common 
basis of that great branch of Mathematical Physics and of those fur¬ 
ther developments in analysis on which higher mathematics rests —^ 
the Theory of Functions of a Complex Variable. 



Note ow Chap, VII, § 6, EkmmfiU, p. 181. 

It is possible to geneialize this example and at the same time to 
simplify the treatment. Let F (», y, z) be any quadratic form what¬ 
soever. Then F has a maximum on the sphere ^ s aK Hence 
Equations (11) must hold at this point for a suitable value of X. 
Let the axes of coordinates be so rotated that the point in question 
is (0, 0, a). Then it follows from (11) that, for the transformed 
equations, 

O aaO, E =S 0. 
Thus 

F{x, y, ^ + 2Fxy + By* + (h? 

If the term in xy is present, a suitable rotation of the axes about 
the axis of z will remove it (Analytic Geometry, Chap. XII, § 2) and 
thm F(x, y, z) is reduced to the form (13). But now A, B, C can be 
any real numbers whatsoever. 

Thus the possibility of reducing a quadratic form to a sum of 
squares by means of rotations is shown. The determination of the 
actual transformations which will yield the result is a question of 
less importance, though easily answered by Equations (11). It is 
not ouz purpose to treat it here. 
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